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Preface to the Third Edition 

Digital image processing is a fascinating subject in several aspects. Human beings 
perceive most of the information about their environment through their visual sense. 
While for a long time images could only be captured by photography, we are now at 
the edge of another technological revolution which allows image data to be captured, 
manipulated, and evaluated electronically with computers. 

With breathtaking pace, computers are becoming more powerful and at the same 
time less expensive, so that widespread applications for digital image processing emerge. 
In this way, image processing is becoming a tremendous tool to analyze image data in 
all areas of natural science. For more and more scientists digital image processing will 
be the key to study complex scientific problems they could not have dreamed to tackle 
only a few years ago. A door is opening for new interdisciplinary cooperations merging 
computer science with the corresponding research areas. 

Many students, engineers, and researchers in all natural sciences are faced with the 
problern of needing to know more about digital image processing. This book is written 
to meet this need. The author- hirnself educated in physics - describes digital image 
processing as a new tool for scientific research. The book starts with the essentials 
of image processing and leads - in selected areas - to the state-of-the art. This 
approach gives an insight as to how image processing really works. The selection of the 
material is guided by the needs of a researcher who wants to apply image processing 
techniques in his or her field. In this sense, this book tries to offer an integral view of 
image processing from image acquisition to the extraction of the data of interest. Many 
concepts and mathematical tools which find widespread application in natural sciences 
are also applied in digital image processing. Such analogies are pointed out, since they 
provide an easy access to many complex problems in digital image processing for readers 
with a general background in natural sciences. The discussion of the general concepts is 
supplemented with examples from applications on PC-based image processing systems 
and ready-to-use implementations of important algorithms. Part of these examples 
are demonstrated with BioScan OPTIMAS, a high-quality image processing software 
package for PC-based image processing systems (BioScan, Inc., Edmonds, WA). A 
special feature of this book is the extensive treatment of three-dimensional images 
and image sequences. The synthetic images used for illustration were designed and 
computed with Caligari Broadcast (Octree Software, N.Y.) on a Commodore Amiga by 
AEON Verlag, Hanau, FRG. 
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After studying this book, the reader should be able to apply even quite complex 
digital image processing techniques in his or her research area. This book is based on 
courses given by the author since 1986 in the Physics Department and the Interdisci
plinary Center for Scientific Computing at the University of Heidelberg. It is assumed 
that the reader is familiar with elementary matrix algebra as well as the Fourier trans
form. Wherever possible, mathematical topics are described intuitively making use of 
the fact that image processing is an ideal subject to illustrate even complex mathemat
ical relations. 

I am deeply indebted to the many individuals who helped me to write this book. I do 
this by tracing its history. In the early 1980s, when I worked on the physics of small-scale 
air-sea interaction at the Institute of Environmental Physics at Heidelberg University, 
it became obvious that these complex phenomena could not be adequately treated with 
point measuring probes. Consequently, a number of area extended measuring techniques 
were developed. Then I searched for techniques to extract the physically relevant data 
from the images and sought for colleagues with experience in digital image processing. 
The first contacts were established with the Institute for Applied Physics at Heidelberg 
University and the German Cancer Research Center in Heidelberg. I would like to thank 
Prof. Dr. J. Bille, Dr. J. Dengier and Dr. M. Schmidt cordially for many eye-opening 
conversations and their cooperation. 

Then I contacted the faculty for computer science at Karlsruhe University and the 
Fraunhofer Institute for Information and Data Processing in Karlsruhe. I learnt a 
great deal from the course of Prof. Dr. H.-H. Nageland Dr. R. Kories on "Algorithmic 
Interpretation of Image Sequences" that I attended in the summer term 1986. 

In April 1989, a German edition of this book was published by Springer-Verlag. 
This is not a Straightforward translation, but a completely revised edition with many 
augmentations, notably with many more practical examples, listings of important al
gorithms, a new chapter on shape, updated information on the latest image processing 
hardware, a new set of color tables, and countless small improvements. 

I would like to express my sincere thanks to Dr. Klaus Riemer. He drafted several 
chapters of the lecture notes for my courses at Heidelberg University. He also designed 
a number of drawings for this book. Many individuals have reviewed various drafts of 
the manuscript. I would like to thank Robert I. Birenbaum, Thomas Fendrich, Karl
Heinz Grosser, Jochen Klinke, Dr. Dietmar Wierzimok and many others for valuable 
comments and suggestions on different parts of the manuscript. I am mostly grateful 
for the help of my friends at AEON Verlag. They sacrificed many night hours for 
proofreading, designing computer graphics, and providing general editorial assistance. 

Many researchers and companies provided me with material from their research. 
The following list shows the many applications of digital image processing: 
e Dr. K. S. Baker, Scripps Institution of Oceanography, La Jolla, California; R. C. 

Smith, University of California at Santa Barbara, California; 0. B. Brown, Rosenstiel 
School of Marine and Atmospheric Science, University of Miami, Florida 

• Dr. J. P. Burt, David Sarnoff Research Center, Princeton, New Jersey 
• Dr. P. de Loor and Drs. D. van Halsema, Physics and Electronics Laboratory, TNO, 

Den Haag 
• Dr. J. Dengler, Department of Medical and Biological Computer Science, German 
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Cancer Research Center, Heidelberg, and Dr. M. Schmidt, Alfred Wegener Institute, 
Bremerhaven 

• Dr. W. Enkelmann, Fraunhofer-lnstitute for Information and Data Processing, Karls-
ruhe 

• Prof. Dr. G. Granlund, Computer Vision Laboratory, University of Linköping 
• Dr. R. Kories, Fraunhofer-lnstitute for Information and Data Processing, Karlsruhe 
• Prof. Dr. E. C. Hildreth, Center for Biological Information Processing, Massachusetts 

Institute of Technology, Cambridge, Massachusetts 
• Prof. Dr. A. C. Kak, School of Electrical Engineering, Purdue University, West 

Lafayette, Indiana 
• Dr. K. Riemer and Dr. D. Wierzimok, Institute for Environmental Physics, University 

of Heidelberg 
• Dr. B. Schmitt and Prof. Dr. D. Komitowski, Department for Histodiagnostics and 

Pathomorphological Documentation, German Cancer Research Center, Heidelberg 
• J. Steurer, Institute for Communications Technology, Technical University of Munich 
• Prof. Dr. J. Wolfrum and Dr. H. Becker, Institute for Physical Chemistry, University 

of Heidelberg 
• lmaging Technology Inc., Woburn, Massachusetts, and Stemmer PC-Systeme GmbH, 

Munich 
• Matrox Electronic Systems Limited, Dorval, Quebec, and Rauscher GmbH, Munich 
• Teehex Computer+ Grafik Vertriebs GmbH, Munich 

I would also like to thank Prof. Dr. K. 0. Münnich, director of the Institute for 
Environmental Physics. From the beginning, he was open-minded about new ideas to 
apply digital image processing techniques in environmental physics. It is due to his 
farsightedness and substantial support that the research group "Digital Image Process
ing in Environmental Physics" could develop so fruitfully at his institute. Many of 
the examples shown in this book are taken from my research at Heidelberg Univer
sity and the Scripps Institution of Oceanography. I gratefully acknowledge financial 
support for this research from the German Science Foundation, the European Commu
nity, the National Science Foundation (OCE8911224), and the Office of Naval Research 
(N00014-89-J-3222). Most of this book has been written while I was guest professor 
at the Interdisciplinary Research Center for Scientific Computing at Heidelberg Uni
versity. I would like to thank Prof. Dr. Jäger for his hospitality. I would also like to 
express my sincere thanks to the staff of Springer-Verlag for their constant interest in 
this book and their professional advice. 

For the third edition, the proven and well-received concept of the first and second 
editions has been maintained and only some errors have been corrected. However, 
Appendix B (PC-Based Image Processing Systems) has been completely rewritten to 
accomodate to the considerable progress in hardware during the last two years. Again, 
I would like to thank all readers in advance for their comments on further improvements 
or additions. I am also grateful for hints on errors, omissions or typing errors which, 
despite all the care taken, may still have slipped attention. 

La Jolla, California and Heidelberg, February 1995 Bernd Jähne 
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1 Introd uction 

1.1 Digital Image Processing- A New Research 
Tool 

From the beginning of science, visual observation has played a major role. At that 
time, the only way to document the results of an experiment was by verbal description 
and manual drawings. The next major step was the invention of photography which 
enabled results to be documented objectively. Three prominent examples of scientific 
applications of photography are astronomy, photogrammetry, and particle physics. As
tronomers were able to measure positions and magnitudes of stars accurately. Aerial 
images were used to produce topographic maps. Searching through countless images 
from hydrogen bubble chambers led to the discovery of many elementary particles in 
physics. These manual evaluation procedures, however, were time consurning. Some 
semi- or even fully automated optomechanical devices were designed. However, they 
were adapted to a single specific purpose. This is why quantitative evaluation of images 
never found widespread application at that time. Generally, images were only used for 
documentation, qualitative description and illustration of the phenomena observed. 

Nowadays, we are in the rniddle of a second revolution sparked by the rapid progress 
in video and computer technology. Personal computers and workstations have become 
powerful enough to process image data. They have also become cheap enough to be 
widely used. In consequence, image processing is turning from a specialized science in 
areas such as astronomy, remote sensing, electrical engineering, and computer science 
into a standard scientific tool. Applications in image processing have now been applied 
to virtually all the natural sciences. 

A simple example clearly demonstrates the power of visual information. lmagine 
you had the task to write an article about a new technical system, for example, a new 
type of a solar power plant. It would take an enormous effort to describe the system 
if you could not include images and technical drawings. The reader of your imageless 
article would also have a frustrating experience. He would spend a lot of time trying 
to figure out how the new solar power plant worked and he might end up with only a 
poor picture of what it looked like. 

Technical drawings and photographs of the solar power plant would be of enormous 
help for the reader of your article. First, he would immediately have an idea of the 
plant. Secondly, he could study details in the drawings and photographs which were not 
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described in the text, but which caught his attention. Pictorial information provides 
much more details, a fact which can be precisely summarized by the saying that "a 
picture is worth a thousand words". 

Another observation is of interest. If the reader later heard of the new solar plant, 
he could easily recall what it looked like, the object "solar plant" being instantaneously 
associated with an image. 

1.2 Components of an Image Processing System 

In this section, the technical innovations that enabled the widespread application of 
image processing in science are briefl.y reviewed. It will outline the capabilities of 
modern image processing systems and the progress in image sensors, image storage, 
and image processing. 

1.2.1 Image Sensors 

Digital processing requires images to be obtained in the form of electrical signals. These 
signals can be digitized into sequences of numbers which then can be processed by a 
computer. There are many ways to convert imagesintodigital numbers. Here, we will 
focus on video technology, since it is the most common and affordable approach. 

The milestone in image sensing technology was the invention of semiconductor pho
todetector arrays. There are many types of such sensors, the most common being the 
charge coupled device or CCD. Such a sensor consists of a large number of photosensitive 
elements. A typical high resolution CCD sensor (RS 170 norm) has 486 lines of 768 
elements on a 10.5 x 11 Jlm grid. During the accumulation phase, each element collects 
electrical charges, which are generated by absorbed photons. Thus the collected charge 
is proportional to the illumination. In the read-out phase, these charges are sequentially 
transported across the chip from sensor to sensor and finally converted to an electric 
voltage. 
Semiconductor imaging sensors have a number of significant advantages: 
• Precise and stable geometry. This feature simply results from the manufacturing pro

cedure. Geometrie distortion is virtually absent. More important, the sensor is stable 
in position, showing only a minor temperature dependence due to the low linear ther
mal expansion coefficient of silicon (2 ·10-6 /K). Thesefeatures allow precise size and 
position measurements. A new measuring technology named videometry is emerging. 
We might think that because of the limited number of sensor elements only quite 
coarse measurements are possible in comparison with other physical measurements. 
We willlearn later, in section 17.4.5, that the positions of objects can be determined 
with accuracies well below a tenth of the distance between two sensor elements. This 
degree of accuracy can, of course, only be gained if the other components in the 
camera system do not introduce any significant error. Also, the geometric distortion 
caused by the camera lens has tobe taken into consideration (section 2.2.4). 
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• High sensitivity. The quantum efficiency, i. e., the fraction of elementary charges 
generated per photon, is close to one. However, commercial CCDs cannot be used at 
low light levels because of the thermally generated electrons. But if CCD devices are 
cooled down to low temperatures, they are among the most sensitive imagers. Such 
devices are commonly used in astronomy and are about one hundred times more 
sensitive than photographic material. 

• Small and rugged. A final advantage is the small size of the sensor and its insensitivity 
to external influences such as magnetic fields and vibrations. 
Images are not restricted to visible light. Nowadays, imaging sensor systems are 

available for the whole range of the electromagnetic spectrum from gamma radiation to 
radio waves. In this way, the application range of digital image processing techniques 
has broadened enormously. To a large extent, this development has been initiated by 
astronomy. Astronomers have no other way to obtain knowledge about the distant 
objects they are studying than by measuring the faint emitted radiation. Thus it was 
natural that they developed and continue to develop sensors for the widest possible 
range. 

These considerations lead us to the conclusion that a scientist using an image pro
cessing technique is not interested in the image brightness itself, but in specific physical, 
chemical, or biological characteristics of the objects he or she is studying. The elec
tromagnetic radiation collected on the image plane is only used as a medium to learn 
about the features of interest. 

The following example is taken from satellite oceanography. Plate 1a shows an image 
of the coastal Pacific in Southern California taken with the Coastal Zone Color Scanner 
(CZCS) in the visible green/blue range. The light emitted from the ocean surface water 
in this spectral region is basically determined by the chlorophyll concentration. Thus 
plate 1a directly shows the chlorophyll concentration in a pseudo color code as indicated 
in the color plate. 

The same area was also observed by the NOA6 satellite at the same time in the far 
infrared. The radiation in this wavelength region is related to the ocean surface temper
ature (plate 1b). The temperature and chlorophyll concentration show similar spatial 
patterns which allow different water masses to be distinguished and ocean mixing and 
biological activities to be studied. Provided that the parameters can be determined ac
curately enough and without bias, the area extended measurements from satellites yield 
a much more detailed view of these processes than profiles taken from ships. Satellite 
images taken simultaneously in many different spectral regions, so-called multichannel 
images, have become a very valuable tool in remote sensing. 

Microwaves and radio waves allow active remote sensing. These waves with wave
lengths from meters to millimeters can be sent via an antenna onto the ocean surface. 
Because of the roughness of the sea surface, i. e., small-scale water surface waves, part 
of the emitted radiation is scattered back in all directions. Thus the power received by 
the satellite antenna contains a world of information about processes influencing the 
small-scale waves on the ocean surface [de Loor and Brunsveld van Hulten, 1978]. 

In the right margin of figure 1.1 in the mud-flats between the two islands, strong 
Variations in the radar backscatter can be observed which first puzzled scientists con
siderably. Then it turned out that they were caused by a complex chain of interactions. 
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Figure 1.1: Radar image of the Dutch coast including the islands of Vlieland and Terschelling taken 
with the synthetic aperture radar of the SEASAT satellite on October 9, 1978 and evaluated by 
FVLR/GSOC. The resolution of the image is about 25m. Image kindly provided by D. van Halsema, 
TNO, the Netherlands. 
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Figure 1.2: Another SAR-SEASAT image taken at the same day as figure 1.1 showing a sector of the 
Dutch ljsselmeer. Image kindly provided by D. van Halsema, TNO. 
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Because of the low water depth, there are strong tidal currents in this region which 
are modulated by the varying water depth. The changing currents, in turn, influence 
the small-scale water surface waves. In this complex way, measurements on the ocean 
surface with radiation which does not penetrate the water, still provide clues about 
the bottarn topography. This is an extreme example illustrating the common fact that 
features observed in satellite imagery may have very complex causes. 

On the open ocean (figure 1.1 left side) and in the isolated Ijsselmeer (figure 1.2), 
surface currents are much lower. Consequently, the radar backscatter is quite homoge
neous. In both images, several ship tracks one to three kilometers long are visible. 

In the eastern part of figure 1.2 (top right), different agricultural areas can be 
recognized as small rectangles with considerably different brightnesses. Thus radar 
images are also useful to distinguish different types of surface areas on continents. 
Since radio- and microwaves penetrate clouds, remote sensing of the earth's surface is 
possible despite of weather conditions. 

Garver et al. [1985] give a review of microwave remote sensing, and Goetz et al. 
[1985] survey optical remote sensing. Stewart [1985] describes all aspects of satellite 
oceanography. 

Image sensors draw attention to the relationship between the image intensity and 
the features of the observed object; this is the first task for a scientist applying any 
digital image processing. This aspect is often not adequately considered in computer 
science literature. 

So far, image sensors and images have been considered as data sets with two spatial 
coordinates. A higher level of abstraction is possible. Actually all data with two 
coordinates can be treated in the samemanneras spatial images. In this wider context, 
image sensors may be any kind of instrument which registers data as a function of two 
variables. 

1.2.2 Image Storage 

Images contain huge amounts of data. As an example take a standard image from a 
35 mm camera which measures 24 mm x 36 mm. If we assume a resolution of 0.01 mm, 
it consists of more than 107 data points. Each point needs several bits to resolve the 
different gray values of the image. It is a common standard to distinguish 256 levels. 
One image point can be stored in eight bits or one byte. The whole image would occupy 
10 Mbytes. A color image would require three times as much space since three color 
channels, red, green, and blue, must be stored. 

Mostimages which are now processed are captured by video cameras which provide 
a much lower resolution. A widespread standard contains 512 x 512 image points. One 
gray value image with 8 bitsfpoint contains 256 kbytes of data. 

However, applications which analyze time varying processes cannot be studied with 
single frames, but require the analysis of image sequences. The storage requirements 
then increase tremendously. A single second of video images with 30 frames/s needs 
7.5 Mbytes of storage. Three-dimensional imagery, which can really adequately picture 
the three-dimensional world, also needs huge storage space. A single 512 x 512 x 512 
image occupies 128 Mbytes. 
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These examples emphasize the enormous storage requirements involved in the han
dling of image data. The storage densities of semiconductor memory are increasing 
exponentially with time since their invention. When my research group used one of 
the first microcomputer based image processing boards in the early 1980s, an IP-512 
from Imaging Technology, a board packed with memory chips could just hold a single 
512 x 512 image. Less then ten years later, several image processing boards are avail
able, e. g., the VISTAboard from Truevision, which offers a frame buffer 16 times larger 
( 4 Mbytes) on a board half the size ( see also appendix B). 

Thus even personal computers can handle single images without any problems. It 
is still difficult to store digitized image sequences at video rate. One rather expensive 
solution is a large one Gbyte or more in capacity fast peripheral storage device, a so
called real-time magnetic disk. This device has a read/write bandwidth larger than 
10 Mbytes/s so that digitized video images can be read or written in real time. With 
this device video image sequences with up to several thousand images can be digitized 
in real time. 

Video recording is also making tremendous progress. New recording standardssuch 
as S-VHS offer a much high er resolution and better recording quality than the old 
Umatic standard which is widely used in scientific applications. Videotapesare a cheap 
recording medium for .enormous amounts of image data. One hour of gray value images 
corresponds to 21.6 Gbytes of data if digitized with a resolution of 512 X 512 and 8 bits 
per image point. However, a serious deficit remains: it is still tedious and expensive to 
get random access to specific images on the tape. A special controller is necessary and 
the operation involves significant tape wear, since images can only be digitized from a 
running videotape. 

A real breakthrough has been the new generation of video recording equipment. 
These devices, which appeared on the market in 1989, record analog video images on 
an optical disk with a high quality. Each side of the disk holds about 40,000 im
ages equivalent to half an hour of continuous videotape recording. Both recording of 
continuous image sequences and of single frames are possible. Fast random access to 
any image on the disk is possible within less than 0.5 s. Extremely useful for image 
sequence processing is the high-quality forward and backward playback with variable 
speed from 1/255 to 3 times the normal speed. The near future will certainly bring 
both further enhancements and eheaper systems. Digital storage of images on standard 
optical disks is a eheaper alternative, but access to the images is considerably slower. 
Another significant development are CD-ROM players. These cheap devices allow the 
wide distribution of image material, e. g., satellite images. 

The newest technology are VLSI chips such as the CL550A from C-Cube Microsys
tems which allow gray value and color video images to be compressed and decompressed 
in real-time, i. e., at a rate of 30 frames/s. Compression is not error free, but degrada
tion of the images is not visible with typical compression rates of 10:1 to 30:1. With 
such rates, the data is reduced to such an extent that video image sequences can be 
stored on a fast hard disk in real time. If the slight degradation of the images is ac
ceptable, this is a much eheaper and moreflexible solution than a real-time magnetic 
disk. 
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1.2.3 Image Processing Speed 

Because of the immense amount of data in images, successful image processing requires 
large computing power. A current personal computer is about as powerful as a main 
frame ten years ago and sufficiently fast to perform not too complex image operations. 
We will discuss many examples in this book in detail. 

Complex operations, image sequence analysis, and reconstruction from projections, 
however, need more processing power. These demands can also be met with current 
PC-based systems, which are equipped with image processing hardware for specific 
operations. 

Another promising possibility is the use of modern RISC (reduced instruction set 
computing) processors as, e. g., the Intel i860 chip [Margulis, 1990]. In cantrast to 
special image processing hardware, which is much more difficult to program, these 
general purpose processors can be programmed with standard development tools. This 
advantage should not be underestimated. 

Finally, parallel processing has a bright future in digital image processing. Many 
image processing operations can easily be implemented for parallel computers. Often 
used are transputers. These are RISC processors with the feature of special hardware 
for fast seriallinks. Systems with many transputers (so-called superclusters) are being 
more commonly used for image processing. At the Interdisciplinary Center for Scientific 
Computing at Heidelberg University, a superduster with 128 transputers has been 
installed in 1990 and is now extensively used for image sequence processing. 

1.3 Human and Computer Vision 

We cannot think of image processing without considering the human visual system. This 
seems to be a trivial statement, but it has far-reaching consequences. We observe and 
evaluate the images which we are processing with our visual system. Without taking 
this elementary fact into consideration, we may be much misled in the interpretation 
of images. 
The first simple questions we should ask are: 
• What intensity differences can we distinguish? 
• What is the spatial resolution of our eye? 
• How accurately can we estimate and compare distances and areas? 
• What role do colors play in human vision? 

It is obvious that a deeper knowledge would be of immense help for computer vision. 
Here is not the place to give an overview of the human visual system. The intention 
is rather to make us aware of the connection between human and computer vision, 
and to pick out some elementary facts we are confronted with when we perform digital 
image processing. A detailed comparison of human and computer vision can be found 
in Levine [1985]. 

The reader can perform some experiments by himself. Figure 1.3 shows several test 
images concerning the question of estimation of distance and area. He will have no 
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Figure 1.3: Test images for distance and area estimation: a) paralleiiines with up to 5% difference in 
Iength; b) circles with up to 10% difference in radius; c) the verticaiiine appears Ionger, though it has 
the same Iength as the horizontaiiine; d) deception by perspective: the upper Iine (in the background) 
appears Ionger than the Iower Iine (in the foreground), though both are equally Iong. 

problern in seeing even small changes in the length of the parallellines in figure 1.3a. 
A similar area comparison with circles is considerably more difficult (figure 1.3b ). The 
other examples show how the estimate is biased by the context in the image. Such 
phenomena are known as optical deception. Two examples of estimates for length are 
shown in figure 1.3c, d. These examples point out that the human visual system 
interprets the context in its estimate of length. Consequently, we should be very careful 
in our visual estimates of lengths and areas in images. 

We can draw similar conclusions for the estimate of absolute gray values. Figure 1.4a 
shows that the small reetangular area with a medium brightness appears brighter in 
the dark background than in the light background, though its absolute brightness is the 
same. This deception only disappears when the two areas merge. The step case-like 
increase in the brightness in figure 1.4b shows a similar effect. The brightness of one 
step appears to increase towards the next darker step. 

Because of the low brightness resolution of printed images, we cannot perform sim
ilar experiments regarding the brightness resolution of our visual sense. It shows a 
logarithmic rather than a linear response. This means that we can distinguish relative 
but not absolute brightness differences. In a wide range of brightnesses, we can resolve 
relative differences of about 2 %. 

These characteristics of the human visual system are quite different from those of a 
machine vision system. Typically only 256 gray values are resolved. Thus a digitized 
image has much lower dynamics than the human visual system. This is the reason why 
the quality of a digitized image, especially of a scene with high contrast in brightness, 
appears inferior to us compared to what we see directly. Although the relative brightness 
resolution is far better than 2 % in the bright parts of the image, it is poor in the dark 
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Figure 1.4: Distinction of gray values: a) small reetangular areas of constant gray value are placed in 
different arrangements in a darker and brighter background; b) a linear stepwise increase in brightness. 

parts of the images. At a gray value of 10, the brightness resolution is only 10 %. 
In order to cope with this problem, video cameras generally convert the light inten

sity I not linearly, but with an exponentiallaw into the gray value g: 

G=TY. (1.1) 

The exponent 1 is denoted the gamma value. Typically, 1 has a value of 0.4. With this 
exponential conversion, the logarithmic characteristic of the human visual system may 
be approximated. Here the contrast range is significantly enhanced. If we presume a 
minimum relative brightness resolution of 10%, we get useable contrast ranges of 25 
and 316 with 1 = 1 and 1 = 0.4, respectively. For many scientific applications, however, 
it is essential that a linear relation exists between the light intensity and the gray value 
(I = 1). Many CCD cameras provide a jumper or a trimmer to switch or adjust the 
gamma value. 

Now we turn to the question of the recognition of objects in images. Although 
figure 1.5 contains only a few lines and is a planar image not containing any direct 
information on the depth, we immediately recognize a cube in the right and left image 
and its orientation in space. The only clues from which we can draw this conclusion 
are the hidden lines and our knowledge about the shape of a cube. The medium image, 
which also shows the hidden lines, is ambivalent. With some training, we can switch 
between the two possible orientations in space. 

Figure 1.6 shows another remarkable feature of the human visual system. With ease 
we see sharp boundaries between the different textures in figure 1.6a and immediately 
recognize the figure 5. In figure 1.6b we identify a white equally sided triangle, although 
part of the boundaries do not exist. 
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Figure 1.5: Recognition of three-dimensional objects: three different representations of a cube with 
identical edges in the image plane. 

From these few observations, we can conclude that the human visual system is 
extremely powerful in recognizing objects, but has some deficiencies in the absolute 
estimation of gray values, distances, and areas. Of course, the performance of the visual 
system is related to how the visual information is processed. We might be tempted 
to measure the power of a vision system with a few figures as the number of sensor 
elements and the number of operations it can perform per time. The retina contains 
approximately 130 millians photo receptors. These are many more sensor elements 
than on a CCD chip. Compared to computers with clock times of several 10 MHz, 
the switching time of neural processor elements is about 104 times slower. Despite this 
slower timing and the huge number of receptors, the human visual system is much more 
powerful than any computer vision system. We constantly rely on the fact that it can 
analyze even complex scenes in real time so that we can react correspondingly. 

In comparison, the power of computer vision systems is marginal and should make 
us feel humble. A digital image processing system can only perform some elementary or 
well defined fixed image processing tasks such as quality control in industry production 
in real time. More complex tasks such as the analysis of motion or the reconstruc
tion of an observed three-dimensional scene from two-dimensional image data require 
tremendous processing time. We are still worlds away from a universal digital image 
processing which is capable of "understanding" images as human beings do. 

There is another connection between human and computer vision which is worth 
noting. Important developments in computer vision have been made through progress 
in understanding the human visual system. We will encounter several examples in this 
book: the pyramid as an efficient data structure for image processing (chapter 8), the 
concept of local orientation (chapter 7), and motion determination by filter techniques 
( chapter 17). 
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Figure 1.6: a) Recognition of boundaries between textures; b) ''interpolation" of object boundaries. 

1.4 Examples of Scientific Applications 

In this section the considerable progress which evolved with the usage of image mea
suring techniques is described. The following examples are typical for scientific appli
cations of digital image processing in the sense that image processing enables complex 
phenomena to be evaluated, which could not be adequately accessed with conventional 
measuring techniques. 

The first examples are the exchange processes between the atmosphere and the 
oceans which play a major role in global climate and distribution of pollutants on 
the planet earth [Dahlem Workshop The Changing Atmosphere, 1987). One of these 
processes is the exchange of gases. Carbon dioxide, methane, and other trace gases are 
climate active gases, since they absorb infrared radiation. The observed concentration 
increase of these gases has a significant influence on the global climate. Although there 
are still considerable uncertainties, all evidence so far indicates that we face serious 
climate changes, particularly global warming. Thus it is of great importance to know 
how these gases are exchanged between the atmosphere and the ocean. 

The physics of gas exchange is only poorly understood, since it is a complex prob lern. 
The critical processes take place in a very thin layer at the ocean surface, which is only 
several 10 flill thick. In this layer, the gases penetrate from the atmosphere into the 
ocean surface by molecular diffusion and are then swept into deeper layers by irregular, 
turbulent velocity fluctuations. 

Processes that take place in such a thin layer at the ocean surface undulated by 
surface waves are very diffi.cult to investigate experimentally. Conventional measuring 
technique determines the mean flux density of a gas tracer across the interface. If this 
information is represented in an image, it would just show an area of a constant gray 
value. The brightness would be proportional to the flux density and we would not learn 
anything about how the gas exchange process works. 

A new method now allows the penetration of the gas tracer into the water surface 
to be made visible. The technique uses reactive gases and fluorescent dyes [Jähne, 
1990). The intensity of the fiuorescent light is proportional to the penetration depth 
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Figure 1.7: a) Time series of the slope of water surface waves; b) image of the wave slope; c) wave 
number power spectrum computed from ab out 200 images; from measurements of the author performed 
in the wind/wave facility at the Institut de Mecanique Statistique de la Turbulence, University of 
Marseille; wind speed: 5 m/s, fetch: 6.2 m. 

of the gas tracer. We can now obtain an image which gives a detailed insight into the 
processes taking place at the water surface (plate 2a and b ). At first glance, we see that 
the gas exchange process changes significantly when waves occur at the water surface. 
Evaluation of single images and image sequences yields a new world of information 
about the gas exchange process. First, we can determine the mean penetration depth 
of the gas tracer which directly yields the exchangerate as with conventional techniques. 
Then we can estimate size, velocity and lifetime of the eddies which transport the gas 
across the boundary layer and thus understand how the exchange process works. 

A similar technique allows vertical profilestobe measured in laboratory wind/water 
facilities [ Jähne, 1990]. This time, the intensity of the fl.uorescent light is directly 
proportional to the gas tracer concentration. Fluorescence is stimulated by an argon
ion laser piercing the water surface perpendicularly from above. A CCD camera is 
placed just below the water leveloutside the water channel and observes the laser beam 
from aside. Time series of the vertical profile are shown in plate 2c as an image with 
one space and one time coordinate, known as a space-time image. 

Another example is the measurement of small-scale waves on the ocean surface 
[Jähne and Waas, 1989; Jähne and Riemer, 1990]. Point measurements with a laser 
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Figure 1.8: Image sequence of the water wave slope represented as a wave cube; unpublished data 
taken by the author in the Marseille wind/wave facility. 

probe result in time series from which it is impossible to infer the two-dimensional 
structure of the waves on the water surface. In figure 1.7a, we recognize that small 
waves are predominantly located on just one side of the !arger waves, but we do not 
know from which direction these waves are coming. A video image of the water surface 
showing the slope coded in gray values contains all this information ( figure 1. 7b) . From 
many of such images 2-D wave number spectra can be calc~lated (figure 1.7c, plate 5). 
Finally, an image sequence of the wave slope contains both the temporal and spatial 
characteristics of the waves (figure 1.8). 

The last example is taken from physical chemistry. It illustrates how complex chem
ical processes can be made visible and the effort required to image such processes. The 
research group of Prof. Dr. Wolfrum at the Institute for Physical Chemistry at Hei
delberg University has studied the mechanisms of technical combustion. Suntz et al. 
[1988] have measured the OH-radical concentration in an experimental combustion en
gine. They used a XeCl eximer laser with a wavelength of 308 nm to stimulate an 
excited electron state of the OH-radical in a small planar light sheet which is 25 mm 
wide and 75/lm thick (figure 1.9). The resulting fl.uorescent light is measured by a light
intensified CCD camera and an illumination time of 25 ns. This short illumination time 
is necessary to suppress the light generation by combustion. 

Results with a lean combustion mixture are shown in plate 2d. High OH-Radical 
concentrations are yielded at the fl.ame front. The concentrations correlate with the 
shape of the front. They are significantly higher with concave rather than convex lines. 
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Figure 1.9: Experimental setup to measure the OH-radical concentration during combustion in an 
experimental engine with a square piston [Suntz et al., 1988]. 

1.5 Hierarchy of Image Processing Operations 

Image processing is not a one-step process. We are able to distinguish between several 
steps which must be performed one after the other until we can extract the data of 
interest from the observed scene. In this way a hiemrchical processing scheme is built up 
as sketched in figure 1.10. As a conclusion to this introduction to image processing, an 
overview of the different phases of image processing is given, tagether with a summary 
outline of this book. 

Image processing begins with the capturing of an image with a suitable, not neces
sarily optical, acquiring system. Then the image sensed must be brought into a form 
which can be treated with digital computers. This process is called digitization. 

The first steps of digital processing may include a number of different operations. 
It may be necessary to correct known disturbances in the image, for instance caused 
by a defocused optics, motion blur, errors in the sensor, or errors in the transmission 
of image signals (image restomtion). H the sensor has nonlinear characteristics, these 
need to be corrected. Likewise, brightness and cantrast of the image can be optimized. 
Another important operation is noise reduction in noisy images. A regular task for 
satellite imagery are coordinate transformations to remove geometrical distortions. 

The next phases depend on the aim of image processing. Sometimes only removing 
sensor-related errors from the image or enhancing the cantrast is required. Effective 
transmission and storage of images necessitates a further step. In order to cope with 
the enormaus amount of image data, the images must be stored and transmitted in the 
tightest possible code. Some types of images may allow errors in the coding process, 
other types may not. 

A whole chain of processing steps is necessary to analyze and identify objects. First, 
adequate filtering procedures must be applied in order to distinguish the objects of 
interest from other objects and the background. Then the object has to be separated 
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Figure 1.10: A hierarchy of digital image processing tasks from image formation to image comprehen
Slon. 
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Figure 1.11: By what means do we recognize that all objects, except for one, are lamps? 

from the background ( segmentation). This process leads to a binary image. N ow that 
we know the exact geometrical shape of the object, we can extract further information 
as the mean gray value, the area, perimeter, and other parameters for the form of 
the object. These parameters can be used to classify objects ( classification). This is 
an important step in many applications of image processing as the following examples 
show: 
• In a satellite image which shows an agricultural area, we would like to distinguish 

fields with different fruits and obtain parameters to estimate the ripeness or to detect 
darnage by parasites (sec figure 1.2). 

• There are many medical applications where the essential question is to detect patho
logical changes. A classical example is the analysis of aberrations of chromosomes. 

• Character recognition in printed and handwritten text is another example which 
has been studied since image processing began and still poses significant difficulties. 
While you are reading this text, you are performing just this task. 

You hopefully do more, namely to try to understand the meaning of what you are 
reading. This is also the final step of image processing which aims to understand the 
observed scene. We perform this task more or less unconsciously whenever we use our 
visual system. We recognize people, we can easily distinguish between the image of a 
scientific lab and that of a living room, or watch the traffic to cross a street safely. We 



18 1 Introduction 

all do this without knowing how the visual system works. 
Take as another example the objects shown in figure 1.11. We will have no problern 

in recognizing that all objects but one are lamps. How could a machine vision system 
perform this task? It is obvious that it is a complex problem, which can only be solved 
if adequate representation of and access to previously gained knowledge is available. We 
can recognize a lamp because we have already seen many other lamps before and because 
we can draw conclusions not only from the geometric shape but also by considering the 
possible purpose of an object. Research on problems of this kind are part of a research 
area called artificial intelligence. 

"Recognition" in scientific applications is often much easier to handle than in ordi
nary scenes. We can often describe the features of an object in which we are interested 
in a precise way. Thus scientific applications often do not include any methods of ar
tificial intelligence but have an algorithmic approach. We will discuss this matter in 
more detail in chapter 12. 

1.6 Image Processing and Computer Graphics 

For some time, image processing and computer graphics have been treated as two 
different areas. Since then knowledge in both areas has increased considerably and 
more complex problems are able to be treated. Computer graphics is striving to achieve 
photorealistic computer generated images of a three-dimensional scene, while image 
processing is trying to reconstruct it from an image actually taken with a camera. In this 
sense, computer graphics performs the inverse procedure to that of image processing. 

We start with knowledge on the shape and features of an object, i. e., start at the 
bottom of figure 1.10 and work upwards until we yield a two-dimensional image. To 
handle image processing or computer graphics, we basically have to work from the same 
knowledge. We need to know the interaction between illumination and objects, how a 
three-dimensional scene is projected onto an image plane, etc. 

There are still quite some differences between an image processing and a graphics 
workstation. But we can envisage that, when the similarities and interrelations between 
computer graphics and image processing are better understood and the proper hardware 
is developed, we will see some kind of general purpose workstation in the future which 
can handle computer graphics as well as image processing tasks. 



2 Image Formation and Digitization 

Image acquisition is the first step of digital image processing and is often not properly 
taken into account. However, quantitative analysis of any images requires a good un
derstanding of the image formation process. Only with a profound knowledge of all the 
steps involved in image acquisition, is it possible to interpret the contents of an image 
correctly. The steps necessary for an object in the three-dimensional world to become 
a digital image in the memory of a computer are as follows: 

• Becoming visible. An object becomes visible by the interaction with light or, more 
generally, electromagnetic radiation. The four basic types of interaction are reflection, 
refraction, absorption, and scattering. These effects depend on the optical properties 
of the material from which the object is made and on its surface structure. The light 
collected by a camera system is determined by these optical properties as well as by 
the illumination, i. e., position and nature of the light or, more generally, radiation 
sources. 

• Projection. An optical system collects the light rays reflected from the objects and 
projects the three-dimensional world onto a two-dimensional image plane. 

• Digitization. The continuous image on the image plane must be converted into im
age points on a discrete grid. Furthermore, the intensity at each point must be 
represented by a suitable finite number of gray values ( Quantization). 

These steps will be discussed in the following three sections. Quantization is the 
topic of section 4.2.2. 

2.1 Interaction between Light and Matter 

2.1.1 Introduction 

The interaction between matter and radiation is the basis for all imaging. This is more a 
topic of physics rather than image processing. Knowledge about this subject, however, 
is very useful, especially in scientific and industrial applications, where we have control 
on how we set up our imaging system. An approach which integrates the optical setup 
and the processing of the resulting images is required in order to obtain the best and 
most cost effective solution. In other words, if we make a serious error in the imaging 
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a) 
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Figure 2.1: a) Sketch ofthe interaction between illumination and objects; a) objects with impermeable 
surfaces; b) more general arrangement showing reflection, absorption, scattering, and refraction of 
light from the light source to the object, the object of interest itself, and from the object back to the 
camera. 

system, processing of the images may be costly and slow or, even worse, it might not 
be possible at all to correct for the resulting degradations. 

Applications in image processing are so widespread that a complete discussion of 
this topic is not possible here. We should, however, be aware of some basic facts 
that enable us to consider the illumination arrangement in our application properly. 
Interaction between illumination and the observed scene has received much attention 
in computer graphics where researchers are trying to achieve more realistic computer 
generated images. In computer graphics the task is to determine the light intensity 
at the surface of the object, given the geometrical arrangement of objects and light 
sources and the optical properties of the objects. In image processing, we have to solve 
the inverse problem, namely, to infer the position of the objects in space and their 
optical properties from the image projected onto the image plane. 

We can get a feeling of this complexity from the sequence shown in plate 3. It shows 
the same scene rendered with more and more sophisticated models of the interactions 
between the illumination and the illuminated objects. 

2.1.2 Opaque Surfaces 

The illumination problern is less complex if only opaque surfaces are considered (fig
ure 2.1a). The problern can be divided into two parts. First we have to calculate the 
illuminance at the object's surface. In this simple case, only the light from the light 
sources may be considered. However, this is only a zero order approximation, since the 
object is also illuminated by light refiected from all the other object points in the scene. 
In other words, illuminances from the objects are coupled. As an example, consider the 
motion of a single object without any other changes in the scene including the setup of 
the light sources. Then many more things than just the position of the moving object 
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change. The shadow, the moving object is casting, changes with the relative position 
of the object and the light sources. When the object comes close to other objects, the 
illuminance of these objects will change. 

An exact solution to this problern can only be found by solving a huge linear equation 
system containing all object points and light sources. Solving such an equation system 
which takes into account the influence of other objects on the illumination of an object 
point is called ray tracing and is a computationally costly procedure. If finally we have 
obtained the correct object illumination, the second task is to use the optical properties 
of the object's surface again to calculate the light intensity which is collected by the 
camera lens. 

2.1.3 Volumes 

Opaque surfaces govern natural scenes. However, many scientific objects cannot be 
reduced to such a simple description, as much scientific data is three-dimensional. The 
most obvious example are all kinds of three-dimensional fields. We might, for example, 
have determined the three-dimensional current field from the analysis of flow visualiza
tion experiments or numerical calculations. Modern medical image techniques with pen
etrating radiationalso yield volume data of the human body (sections 2.2.10 and 13.3). 

In all these cases, not only the surfaces, i. e., planes of discontinuities in optical prop
erties, are of importance, but also volume elements which scatter or absorb radiation. 
These effects have to be taken into account both for the generation of realistic computer 
images and for the reconstruction from projections. In contrast to surface rendering, 
the generation of computer images from volume data is called volume rendering. 

If we take absorption and scattering processes into account imaging becomes much 
more complex (figure 2.1b ). In general, we must consider refraction, absorption and 
scattering of light rays from the light source to each object point and back to the camera. 
This general situation is much too complex to be solvable practically. Fortunately, most 
practical situations are much easier in the sense that they include only a few of the 
possible interaction processes. 

With respect to image processing, awareness of the complexity of illumination helps 
us in the design of a proper illumination system. Since in scientific applications object 
properties are inferred from optical properties, we need to know the illumination of the 
object's surface. 

As an example, consider satellite images in the far infrared from the ocean surface. 
Without any other influences, the observed brightness would directly be related to the 
ocean's surface temperature. There are, however, many disturbances which must be 
properly corrected, if accessible, in order to determine accurate surface temperatures: 
• The infrared radiation, emitted by the ocean's surface, is slightly absorbed in the 

atmosphere by water vapor and other trace gases. 
• As in the visible range, water has a small reflectivity of about 2-3% at low angles of 

incidence. With this level of fraction, the measurement of the sea surface temperature 
is influenced by the temperatures of the sky and clouds. 

• Clouds must be carefully detected and screened since they hinder the view onto the 
ocean surface. This is not difficult for thick clouds which are not penetrated at all, 
but it is for thin, partly transparent clouds. 
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2.1.4 Light Sources 

The simplest model for a light source is the point light source. Any other light source 
can be built from point light sources. The total power emitted by a light source is called 
the radiation flux, e. A surface element, dA, whose normal is inclined at an angle c 
with the incoming light ray, and which is r distaut from a point source, receives the 
illuminance E: 

(2.1) 

The illuminance of a point light source decreases quadratically with distance. We 
can regard all light sources as point sources whose size on the image plane is smaller 
than the resolution of the camera system. The illuminance of extended light sources is 
independent of the distance from the camera. The quadratic decrease in the intensity 
of a small element in the source is compensated exactly by the quadratic increase in 
the numbers of elements per surface unit on the image plane. 

2.1.5 Reflection 

Basically, we can distinguish between two types of refiection; those directed from mirrors 
and diffusive refiection. 

Mirror surfaces refiect the incident light only in one direction. Many objects, for 
example, metallic and water surfaces, refiect partly or entirely in this manner. Directed 
refiection becomes visible in images as mirror images or, if the scene is illuminated 
with direct light, in the form of specular reflexes (see also plate 3). Specular refiexes 
constitute a serious problern for image processing. They are not fixed to the object's 
surface, i. e., they cannot be regarded as a valid feature, but depend solely on the angles 
between light sources, the object surface, and the camera. 

In contrast, an ideal diffusively reflecting surface, called a Lambertian radiator, scat
ters light in all directions equally. Diffusively refiecting surfaces, which are not Lam
bertian radiators, must be characterized by the angular dispersion of the refiected light 
intensity. Many surfaces such as painted metallic surfaces, show a mixed refiectivity; 
here radiation is refiected partly diffusively and partly directedly. 

2.2 Imageformation 

Nearly all imaging techniques essentially project three-dimensional space in one way or 
the other onto a two-dimensional image plane. Thus basically imaging can be regarded 
as a projection from 3-D into 2-D space. The essential point is the loss of one coordinate 
which constitutes a severe loss of information. Because we unconsciously and constantly 
experience that the human visual system performs this task in real time, we might be 
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X~ 

World Coordinates 

Figure 2.2: Illustration of world and camera coordinates. 

tempted to think that the reconstruction of the three-dimensional world from two
dimensional images is quite a simple task. In this section, we analyze step by step the 
formation of an image from the three-dimensional world, and discover the complexity 
of the reconstruction task. 

2.2.1 World and Camera Coordinates 

The position of objects can be described in two different ways (figure 2.2). First, we can 
use a coordinate system which is related to the scene observed. These coordinates are 
called world coordinates and denoted as X' = (X~, X~, X~). We use the convention that 
the X~ and X~ coordinates describe the horizontal and the X~ the vertical positions, 
respectively. A second coordinate system, the camem coordinates X = (X11 X 2 ,X3 ), 

can be fixed to the camera observing the scene. The X3 axis is aligned with the optical 
axis of the camera system (figure 2.2). Physicists are familiar with such considerations. 
It is common to discuss physical phenomena in different coordinate systems. In ele
mentary mechanics, for example, motion is studied with respect to two observers, one 
at rest, the other moving with the object. 

Transition from world to camera coordinates can be described by a tmnslation and 
a rotation term. First, we shift the origin of the world coordinate system to the origin 
of the camera coordinate system by the translation vector T (figure 2.2). Then we 
change the orientation of the shifted system by rotations about suitable axes so that 
it coincides with the camera coordinate system. Mathematically, translation can be 
described by vector subtraction and rotation by the multiplication of the coordinate 
vector with a matrix: 

X =R(X'-T). (2.2) 

Rotation does not change the length or norm of the vectors. Then basic matrix algebra 
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Figure 2.3: Image formation with a pinhole camera. 

teils us that the matrix R must be orthogonal, i. e., it holds the condition 

3 

RRT = I or L TkmTlm = ökl 
m=l 

(2.3) 

where I denotes the identity matrix, whose elements are one and zero on diagonal and 
non-diagonal positions, respectively. The orthogonality condition leaves three matrix 
elements independent out of nine. Unfortunately, the relationship between the matrix 
elements and sets of three such parameters turns out to be quite complex and nonlinear. 
A widely used set of parameters are the three Eulerian rotation angles. Any rotation 
can be decomposed into three consecutive rotations about the axes of the coordinate 
system with these angles. A more detailed discussion can be found in textbooks of 
classical mechanics such as Goldstein [1980]. Rotation and translation together consti
tute six independent parameters describing the general transition from world to camera 
coordinates. 

2.2.2 Pinhole Camera Model: Perspective Projection 
Once we know the camera COordinates of the scene, we can study the optical system 
of the camera. First we take the simplest possible camera, the pinhole camera. The 
imaging element of this camera is an infinitesimal small hole (figure 2.3). Only the light 
ray coming from a point of the object at (X1,X2,X3 ) which passes through this hole 
meets the imageplane at (xt. x2 , -di)· Through this condition an image of the object 
is formed on the image plane. The relationship between the 3-D world and the 2-D 
image coordinates ( x1 , x2) is given by 

(2.4) 

The two world Coordinates parallel to the imageplane are scaled by the factor dd x3. 
Therefore, the image coordinates (x1, x2 ) contain only ratios of world coordinates, from 
which neither the distance nor the true size of an object can be inferred. 
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Shadow 

Figure 2.4: Occlusion of more distant objects and surfaces by perspective projection. 

A straight line in the world space is projected onto a straight line at the ima.ge plane. 
This important feature ca.n be proved by a simple geometric consideration. All light 
rays emitted from a straight line pass through the pinhole. Consequently they all lie 
on a plane which is spanned by the straight line and the pinhole. This plane intersects 
with the ima.ge plane in a straight line. 

All object points on a ray through the pinhole are projected onto a single point in 
the image plane. In a scene with several transparent objects, the objects are projected 
onto each other. Then we ca.nnot infer the three dimensional structure of the scene 
at all. We ma.y not even be able to recognize the shape of individual objects. This 
exa.mple demonstrates how much information is lost by projection of a 3-D scene onto 
a 2-D image plane. 

Most natural scenes, however, contain opaque objects. Here the observed 3-D space 
is essentia.lly reduced to 2-D surfaces. These surfaces can be described by two two
dimensional functions g(x17 x2) and X3 (x17 x2 ) instead of the genera.l description of a 
3-D scala.r gray value image g(X17 X 2,X3). A surfa.ce in space is completely projected 
onto the image plane provided that not more than one point of the surface lies on the 
same ray through the pinhole. H this condition is not met, pa.rts of the surface remain 
invisible. This effect is called occlusion. The occluded 3-D space can be made visible if 
we put a pointlight source at the position of the pinhole (figure 2.4). Then theinvisible 
parts of the scene lie in the shadow of those objects which are closer to the camera. 

As long as we can exclude occlusion, we only need the depth map X 3 (x1 , x2 ) to 
reconstruct the 3-D shape of a scene completely. One way to produce it - which is 
also used by our visual system - is by stereo imaging, i. e., the observation of the scene 
with two sensors from different points of view (section 2.2.9). 

Imaging with a pinhole camera is essentially a perspective projection, since all rays 
must pass through one central point, the pinhole. Thus the pinhole camera model is 
very similar to the imaging with penetrating rays, a.s X-rays, emitted from a point 
source (figure 2.5). In this ca.se, the object lies between the central point and the image 
plane. 

The projection equation corresponds to (2.4) except for the sign: 

(2.5) 
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Object 

Figure 2.5: Perspective projection with X-rays. 

Here generalized image coordinates are used. The image coordinates are divided by 
the image distance d; 

X1 X2 
d; --+ x17 d; --t x2. (2.6) 

Generalized image coordinates are dimensionless. They are equal to the tangent of the 
angle with respect to the optical axis of the system under which the object is observed. 
These coordinates explicitly take the limitations of the projection onto the image plane 
into account. From these coordinates, we cannot infer absolute positions but know 
only the angle under which the object is projected onto the image plane. The same 
coordinates are used in astronomy. The general projection equation of perspective 
projection (2.5) then reduces to 

(xl x2) 
X= (X1,X2,X3) ~----+ z = Xa, Xa . (2.7) 

We will use this simplified projection equation in all further considerations. For optical 
imaging, we just have to include a minus sign or, if speaking geometrically, reflect the 
image at the origin of the coordinate system. 

Perspective projection is only a model for imaging. lt isarather good approximation 
for X-ray imaging since the focus, i. e., the extension of the X-ray source, can be made 
quite small. However, it is less good for optical imaging. Realleus systems only image 
a certain distance range sharply onto the image plane because of the non-zero aperture. 
The images are degraded by lens aberrations causing limited sharpness and geometrical 
distortions. Even if these effects can be neglected, the sharpness of the images is limited 
by diffraction of the electromagnetic waves at the aperture of the lens. We will discuss 
these effects in further sections. 

2.2.3 Homogeneous Coordinates 

In computer graphics, the elegant formalism of homogeneous coordinates [Maxwell, 1951; 
Watt, 1989] is used to describe all the transformations we have discussed so far, i. e., 
translation, rotation, and perspective projection, with a matrix vector multiplication. 
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This formalism is significant, since the whole image formation process can be expressed 
in a single 4 X 4 matrix. 

Homogeneaus Coordinatesare a four-component row vector X'= (tX~, tX~, tX~, t), 
from which the ordinary three-dimensional coordinates are obtained by dividing the first 
three components of the homogeneaus coordinates by the fourth. Any arbitrary trans
formation can be obtained by postmultiplying the homogeneaus coordinates with a 4 x 4 
matrix M. In particular, we can obtain the image coordinates :c = (sxb sx2, sx3, s) by 

:c = X'M. (2.8) 

Since matrix multiplication is associative, we can view the matrix M as composed of 
many transformation matrices, performing such elementary transformations as trans
lation, rotation around a coordinate axis, perspective projection, and scaling. The 
transformation matrices for the elementary transformations are readily derived: 

T 

s 

p = 

[ ~ 
0 

[ 

1 0 0 
0 1 0 
0 0 1 
0 0 0 

Rotation about X 3 axis by 0 

Rotation about X 2 axis by <p 

(2.9) 

Rotation about X 1 axis by 1/J 

Scaling 

Perspective projection 

Perspective projection is formulated slightly differently from the definition in (2. 7). 
Postmultiplication of the homogeneous vector X= (tXt, tX2 , tX3 , t) with P yields 

(2.10) 
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from which we obtain the image Coordinates by division through the fourth coordinate 

(x1,x2) = ( X1 d; ~;x3 ,X2 d; ~;xJ. (2.11) 

From this equation we can see that the image plane is positioned at the origin, since if 
x3 = 0, both image and world Coordinates are identical. The center of projection has 
been shifted to (0, 0, -d;). 

Complete transformations from world Coordinates to image Coordinates can be com
posed of these elementary matrices. Strat [1984] proposed the following decomposition: 

(2.12) 

The scaling S and cropping (translation) C are transformations taking place in the 
two-dimensional image plane. Strat [1984] shows how the complete transformation 
parameters from camera to world Coordinates can be determined in a noniterative way 
from a set of calibration points whose positions in the space is exactly known. In this 
way an absolute calibration of the camera parameters including position, orientation, 
piercing point (of the optical axis), and focallength can be obtained. 

2.2.4 Geometrie Distortion 

A real optical system causes deviations from a perfect perspective projection. The most 
obvious distortions can be observed with simple spheric lenses as barrel- or cushion
shaped images of squares. Even with a corrected lens system these effects are not 
completely suppressed. This type of distortion can easily be understood by consider
ations of symmetry. Since lens systems show a cylinder symmetry, concentric circles 
only experience a distortion in the radius. This distortion can be approximated by 

z'=1+:31zl2' (2.13) 

Depending on whether k3 is positive or negative, barrel- and cushion shaped distor
tions in the images of squares will be observed. Commercial TV lenses show a radial 
deviation of several image points (pixels) at the edge of the sensor. If the distortion 
is corrected with (2.13), the residual error is less than 0.06 image points [Lenz, 1987]. 
This high degree of correction, together with the geometric stability of modern CCD
sensors, accounts for subpixel accuracy in distance and area measurements without 
using expensive speciallenses. 

Lenz [1988] discusses further details which influence the geometrical accuracy of 
CCD sensors. Reconstruction ofthe depth of objects from stereo images (section 2.2.9) 
also requires careful consideration of the geometrical distortions of the camera lenses. 

Distortions also occur if non-planar surfaces are projected onto the image plane. 
These distortions prevail in satellite and aerial imagery. Thus correction of geometric 
distortion in images is a basic topic in remote sensing and photogrammetry [Richards, 
1986]. Aceurate correction of the geometrical distortions requires shifting of image 
points by fractions of the distance of two image points. We will deal with this problern 
later in section 8.2.4 after we have worked out the knowledge necessary to handle it 
properly. 
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Figure 2.6: Illustration of the depth of focus of a thin lens. 

2.2.5 Depth of Focus 

The abstract model of a pinhole camera images every object, independent of its distance 
from the camera, without any loss of sharpness onto the image plane. A real optical 
system can only image objects at a certain distance from the camera onto the image 
plane. The further away the object is located from this plane, the less sharp is its 
image. For practical purposes, it is useful to define a range of distances as the depth 
of focus in which the unsharpness remains under a certain threshold. In this section 
we will consider the depth of focus within the range of geometrical optics, i. e., with a 
perfect lens system and no limits of sharpness due to diffraction. 

First, we can conclude that the replacement of the pinhole by a lens does not change 
the principal imaging geometry. Although a point is no Ionger imaged onto a point, 
but- assuming a circular aperture- onto a small disc, (2.4) still holds for the center 
of the disc. 

The depth of focus is illustrated in figure 2.6. We have placed the origins of the 
camera and image coordinate systems on the object and image plane, respectively. If 
the object distance is increasing, the corresponding image plane lies closer to the lens. 
The image of a point smears to a disc with radius c at the original image plane. The 
relation between c and the shift of the object plane X3 can be calculated using the 
image equation for a thin lens 

(2.14) 

where da and d; are the distance of the object and image from the lens, respectively. 
In case of an out-of-focus object, d~ = da+ X3 and d~ = d;- x3 , a first order Taylor 
expansion in X3 and X3 ( assuming that X3 ~ da and X3 ~ d;) yields 

(2.15) 

Introducing the f -number as the ratio of the focallength f to the diameter of the lens 
aperture 2r 

f n,=-
2r 

(2.16) 

and using c ~ (rjd;)x3 and (2.14), we can express the depth of focus X 3 as a function 
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of the allowed radius of unsharpness e: 

(2.17) 

The depth of focus is directly proportional to the f-number of the lens. The limit of 
n1 --+ oo corresponds to the pinhole camera with an unlimited depth of focus. 

We illustrate the depth of focus further with some practical examples. 
• Distant objects, da > f 

This is the "normal" situation in photography. For this condition equation (2.17) 
approximately yields 

(2.18) 

The depth of focus is inversely proportional to the square of the focal length. Con
sequently, smaller focallengths result - despite the smaller image size - in a larger 
depth of focus. This fact is weH known in photography. Tele lenses and large-image
size cameras have a considerably lower depth of focus than wide-angle lenses and 
small-image-size cameras. A typical high resolution CCD camera has 800 X 590 sen
sor elements, which are 11.5 X 10 J.Lm in size. Thus we can allow for a radius of the 
unsharpness disc of 5 J.Lm. Assuming a lens with an f-number of 2 and a focallength 
of 15 mm, we have a depth of focus of ± 0.2 m at an object distance of 1.5 m. This 
example illustrates that even with this small f-number and the relative low distance, 
we may obtain a large depth of focus. 

• Object-image scale 1:1, da~ d; ~ 2f 
The image and object are of the same size. The depth of focus, 

(2.19) 

then does not depend on the focallength, and is only in the order of the unsharpness 
e. With the same f-number of 2 as in the first example, we obtain a depth of focus 
of only 40 J.Lm. Only a small object zone can be imaged sharply. 

• Microscopy da ~ f, d; > f 
The depth of focus is even smaller in microscopy where the objects are significantly 
enlarged, since it is then given by 

X ....., 2nteda 
3"" d; . (2.20) 

With a 50-fold enlargement, i.e., d;fda =50 and n1 = 1, we yield the extreme low 
depth of focus of only 0.2 J.Lm. 

In conclusion, we can distinguish between two different types of imaging systems: with 
distant objects, we obtain a sufficient depth of focus to image a 3-D scene with consid
erable depth variations, without significant losses in sharpness. In microscopy, however, 
we only can focus a tiny depth zone of an object. Thus we can observe cross sections 
of an object. 

This simple fact has critical consequences for 3-D reconstruction. In microscopy, we 
have no chance at all to reconstruct the 3-D structure of an object from a single image. 
Essentially, it contains information of only one depth, which is, however, distorted by 
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Figure 2.7: Imageformation by integration of the point spread function h(x). A point at X' in the 
object plane results in an intensity distribution with a maximum at the corresponding point x' on the 
image plane. At a point x on the image plane, the contributions from all points x', i. e., g:( x')h( x- x'), 
must be integrated. 

unsharp contours from other depth ranges. Consequently, 3-D reconstruction requires a 
set of images, focused on different depths. Such an image sequence is called a focus series 
and already constitutes a 3-D dimensional image. Reconstruction of the 3-D object 
requires eliminating of any distortions caused by unsharp contours from defocused image 
planes which considerably limit the image quality. 

The 3-D shape of distant objects and X-ray imaging cannot be reconstructed with 
this technique because ofthelarge depth of focus. We willlearn later in sections 2.2.10 
and 13.3 how we can reconstruct the 3-D structure by projections from different direc
tions. 

2.2.6 3-D Point Spread Function 

Previously it was seen that a point in the 3-D object space is not imaged onto a point 
in the image space but onto a more or less extended area with varying intensities. 
Obviously, the function which describes the imaging of a point is an essential feature 
of the imaging system which is called the point spread function, abbreviated as PSF. 
We assume that the PSF is not position dependent. Then the system is called shift 
invariant. 

If we know the PSF, we can calculate how any arbitrary 3-D object will be imaged. 
To perform this operation, we think of the object tobe decomposed into single points. 
Figure 2.7 illustrates this process. A point X' at the object plane is projected onto the 
imageplane with an intensity distribution corresponding to the point spread function h. 
With gi(z') we denote the intensity values at the object plane g~(X') projected onto 
the image plane but without any defects through the imaging. Then the intensity of a 
point z at the image plane is computed by integrating the contributions from the point 
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spread functions which have their maximums at x' ( figure 2. 7) 

00 

g;(x) = j d2x' g;(x')h(x- x') = (g; * h)(x). (2.21) 
-00 

The operation in (2.21) is known as a convolution. Convolutions play an essential role 
in image processing. Convolutions are not only involved in image formation but also in 
many image processing operations. In case of image formation, a convolution obviously 
"smears" an image. Where points and lines are blurred, the resolution is reduced. 

This effect of convolutions can be most easily demonstrated with image structures 
which show periodic gray value variations. As long as the repetition length, the wave
length, of this structure is larger than the width of the PSF, it will experience no 
signi:ficant changes. As the wavelengths decrease, however, the amplitude of the gray 
value variations will start to decrease. Fine structures will finally be smeared out to 
such an extent that they are no Ionger visible. These considerations emphasize the im
portant role of periodic structures and lead naturally to the introduction of the Fourier 
transform which decomposes an image into the periodic gray value variations it contains. 

In the following, it is assumed that the reader is familiar with the basic properties of 
the Fourier transform. (Appendix A.2 gives abrief summary with references for further 
reading.) 

Previous considerations showed that formation of a two-dimensional image on the 
imageplane is described entirely by its PSF. In the following we will extend this con
cept to three dimensions and explicitly calculate the point spread function within the 
limit of geometrical optics, i. e., with a perfect lens system and no diffraction. This 
approach is motivated by the need to understand three-dimensional imaging, especially 
in microscopy, i. e., how a point in the 3-D object space is imaged not only onto a 2-D 
imageplane but onto a 3-D image space. 

First, we consider how a fixed point in the object space is projected into the image 
space. From :figure 2.6 we infer that the radius of the unsharpness disk is given by 

(2.22) 

The index i of c indicates the image space. Then we replace the radius of the aperture r 
by the maximum angle under which the lens collects light from the point considered 
and obtain 

do 
c; = d.x3 tan a . 

• 
(2.23) 

This equation gives us the ·edge of the PSF in the image space. It is a double cone 
with the x3 axis in the center. The tips of both the cones meet in the origin. Outside 
of the two cones, the PSF is zero. Inside the cone, we can infer the intensity from the 
conservation of the radiation energy. Since the radius of the cone increases linearly with 
the distance to the plane of focus, the intensity within the cone decreases quadratically. 
Thus the P SF h; ( z) in the image space is given by 
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Figure 2.8: 3-D PSF of optical imaging with a lens, backprojected into the object space. Lens aberra
tions and diffraction effects are neglected. 

[ 0 is the light intensity collected by the lens from the point; li is the box function which 
is defined as 

II(x) = { ~ ~~L!~!s! . (2.25) 

The last expression in (2.24) is written in cylinder coordinates (r,l/>,z) to take the 
rotation symmetry of the PSF about the x 3 axis into account. 

In a second step, we discuss what the PSF in the image space refers to in the object 
space, since we are interested in how the effects of the imaging are projected back into 
the object space. Wehave to consider two effects. First, the image, and thus also c:, are 
larger than the object by the factor d;jd0 • Second, we must find the planes in object 
and image space corresponding to each other. This problern has already been solved in 
section 2.2.5. Equation (2.15) relates the image to the camera coordinates. In effect, 
the backprojected radius of the unsharpness disk, E0 , is given by 

(2.26) 

and the PSF, backprojected into the object space, by 

ho(X) = lo li ((X{+ X?}1
/

2
) = Io li ( R ) 

1r(X3 tana)2 2X3 tana 1r(Ztana)2 2Ztana · 
(2.27) 

The double cone of the PSF backprojected into the object space, shows the same opening 
angle as the lens (figure 2.8). 

2.2. 7 Optical Transfer Function 

Convolution with the PSF in the space domain is a quite complex operation. In Fourier 
space, however, it is performedas a multiplication of complex numbers. In particular, 
convolution of the 3-D object g~(X) with the PSF ho(X) corresponds in Fourierspace 
to a multiplication ofthe Fourier transformed object g~( k) with the Fourier transformed 
PSF, the optical trans/er function or OTF ho(k ). In this section, we consider the optical 
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transfer function in the object space, i. e., we project the imaged object back into the 
object space. Then the image formation can be described by: 

Imaged object lmaging Object 
Object space 9o(X) = ho(X) * g~(X) 

1 1 1 (2.28) 

Fourier space Yo(k) = ho(k) g~(k). 

Fourier transform pairs are denoted by the symbol ~ . This correspondence means 
that we can describe optical imaging either with the point spread function or the optical 
transfer function. Both descriptions are complete. As with the PSF, the OTF has an 
illustrative meaning. Since the Fourier transform decomposes an object into the periodic 
structures it contains, the OTF teils us how these periodic structures are changed by 
the optical imaging process. An OTF of 1 for a particular wavelength means that this 
periodic structure is not affected at all. If the OTF is 0, it completely disappears. For 
values between 0 and 1 it is attenuated correspondingly. Since the OTF is a complex 
figure, not only the amplitude of a periodic structure can be changed but also its phase. 

Calculation of the OTF 
Direct calculation of the OTF is complicated. Here several features of the Fourier 
transform are used, especially the linearity and separability, to decompose the PSF 
into suitable functions which can be transformed more easily. Two possibilities are 
demonstrated. They are also more generally instructive, since they illustrate some 
important features of the Fourier transform. 

First, some remarks concerning the nomenclature are necessary. Unfortunately, two 
definitions of the wave number k are in use. In spectroscopy and mineralogy, k is 
defined as the reciprocal wavelength .X: k = 1/ .X, i. e., it denotes the number of the 
wavelengths per unit length. In physics, however, the factor 27r is included: k = 27r I A. 
Both definitions have disadvantages and advantages. We will use both definitions and 
denote them as follows: k = 1 I A and k = 21r I A. The corresponding quantities for time 
series are more familiar: the frequency v = 1 IT and the circular frequency w = 27r IT, 
where T is the period of oscillation. 

The first method to calculate the OTF decomposes the PSF into a bundle of S lines 
intersecting at the origin of the coordinate system. They are equally distributed in the 
cross section of the double cone (figure 2.9a). We can think of each S line as being 
one light ray. Without further calculations, we know that this decomposition gives the 
correct quadratic decrease in the PSF, because the same number of S lines intersect a 
quadratically increasing area. The Fourier transform of a S line is a S plane which is 
perpendicular to the line (see appendix A.2). Thus the OTF is composed of a bundle 
of S planes. They intersect the k1 k2 plane at a line through the origin of the k space 
under an angle of at most o:. Since Fourier transform preserves rotational symmetry, 
the OTF is also rotationally symmetric to the k3 axis. The OTF fills the whole Fourier 
space except for a double cone with an angle of 1r 12 - o:. In this sector the OTF is 
zero. The exact values of the OTF in the non-zero part are difficult to obtain with this 
decomposition method. We will infer it with another approach which is based on the 
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Figure 2.9: Calculation of the 3-D OTF from the 3-D PSF. 
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separability of the Fourier transform. We think of the double cone as layers of disks 
with varying radii which increase with lx31 (figure 2.9c). In the first step, we perform 
the Fourier transform only in the x 1x 2 plane. This transformation yields a function 
with two coordinates in the k space and one in the x space, (k1,k2, x3), respectively 
( q, cp, z) in cylinder coordinates. Since the PSF (2.27) depends only on r (rotational 
symmetry araund the z axis), the two-dimensional Fourier transform conforms with a 
one-dimensional Hankel transform of zero order [Bracewell, 1965]: 

h(r,z) 

I 
h'(q, z) 

Io II( r ) 
1r(z tan a)2 2z tan a 

Io J1(27rzqtana). 
1rzqtana 

(2.29) 

The Fourier transform of the disk thus results in a function which contains the Bessel 
function J1. 

As a second step, we perform the missing one-dimensional Fourier transform in the 
z direction. Equation ( 2.29) shows that h' ( q, z) is also a Bessel function in z. This time, 
however, the Fourier transform is one-dimensional. Thus we obtain no disk function 
but 

X 
(2.30) 

If we finally apply the similarity theorem of the Fourier transform 

f(x) ](k) ~ 

1 '(k) ~! ;: , 
(2.31) 

f(ax) 

we obtain 

h( k)- 2Io 
q, 3 - 1rlq tan al ( k2 ) 1

/
2 

( k ) 1- 3 II 3 
q2 tan2 a 2q tan a · 

(2.32) 

Interpretation of the OTF 
A large part of the OTF is zero. This means that spatial structures with the correspond
ing directions and wavelengths completely disappear. This is particularly the case for all 
structures in the z direction, i. e., perpendicularly to the image plane. Such structures 
get completely lost and cannot be reconstructed without additional knowledge. 

3-D structures can only be seen if they also contain structures parallel to the image 
plane. It is, for example, possible to resolve points or lines which lie above each other. 
We can explain this in the x space as well as in the k space. The PSF blurs the points 
and lines, but they can still be distinguished if they are not too close to each other. 
Points or lines are extended objects in Fourier space, i. e., a constant or a plane. Such 
extended objects partly coincide with the non-zero parts of the OTF and thus will not 
vanish entirely. Periodic structures up to an angle of a to the k1k2 plane, which just 
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corresponds to the opening angle of the lens, arenot eliminated by the OTF. Intuitively, 
we can say that we are able to recognize all 3-D structures in which we actually can 
look into. All we need is at least one ray which is perpendicular to the structure. 

Another important property of the OTF emerges which has not yet been considered 
so far. The OTF is inversely proportional to the radial wave number q (2.32). Con
sequently, the contrast of a periodic structure is attenuated proportionally to its wave 
number. Since this property of the OTF is valid for all optical imaging - as in the 
human visual system - the question arises why we can see fine structures at all. 

The answer lies in a closer examination of the geometrical structure of the objects 
observed. Normally, we only see the surfaces of objects, i. e., we do not observe real 
3-D objects but only 2-D surface structures. If we image a 2-D surface onto a 2-D 
image plane, the PSF also reduces to a 2-D function. Mathematically, this means a 
multiplication of the PSF with a {j plane parallel to the observed surface. Consequently, 
the 2-D PSF is now given by the unsharpness disk corresponding to the distance of the 
surface from the lens. The convolution with the 2-D PSF preserves the intensity of all 
structures with wavelengths larger than the disk. 

We arrive at the same conclusion in Fourier space. Multiplication of the 3-D PSF 
with a {j plane in the x space corresponds to a convolution of the 3-D OTF with a {j line 
perpendicular to the plane, i. e., an integration in the corresponding direction. If we 
integrate the 3-D OTF along the k coordinate, we actually get a constant independent 
of the radial wave number q: 

qtana 

2~o j dz' 1 
" lq tanal 

-q tana 

[ 2]1/2 
1- (-z' ) = Io. 

qtana 
(2.33) 

(To solve the integral, we substitute z" = qz' tan a; then we yield an integral over a 
half unit circle.) 

In conclusion, the OTF for surface structures is independent of the wave number. 
However, for volume structures, we still have the problern of the decrease of the OTF 
with the radial wave number. Observing such structures by eye or with a camera, we 
will not be able to observe fine structures. Real 3-D, that is transparent objects, are 
much more common in scientific applications than in natural scenes. One prominent 
example is the wide area of flow visualization. 

2.2.8 Cross Sectional Imaging 

Because of the problems in imaging real 3-D structures, many scientific applications 
observe de facto 2-D objects. In microscopy, only flat objects or thin slits are used 
whose thickness lies within the narrow depth offocus of microscopes (see section 2.2.5). 
In a similar manner, mineralogists fabricate thin slits from mineral probes. 

In flow visualization, it is also possible to observe cross sections of flow fields by 
proper illumination. Only a thin sheet is illuminated and observed with a camera 
perpendicularly to the light sheet. We have already discussed such a technique in 
section 1.4 (see also plate 2d). An example for flow visualization is shown in plate 4 
[ Wierzimok et al., 1989]. Here a thin vertical zone is illuminated. The flow is made 
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Left camera 

a 
Right camera 

Figure 2.10: A stereo camera setup. 

visible by small floating particles. Because of the illuminationtime of 40 ms, they appear 
as small streak lines. Twelve images of a sequence are superposed on this image. The 
streaks from the individual images are shown in a different color. The influence of the 
orbital motions of the waves on the fiow field is clearly visible and increases towards 
the surface of the water. 

Allthese techniques basically observe 2-D cross sections of 3-D objects. They allow 
for a proper imaging of the cross section - which would otherwise not be possible -
but with a complete loss of information in the third dimension. 

2.2.9 Stereoscopy 

Observation of a scene from two different points of view allows the distance of objects 
to be determined. A setup with two imaging sensors is called a stereo system. In this 
way, many biological visual systems perform depth perception. Figure 2.10 illustrates 
how the depth can be determined from a stereo camera setup. Two cameras are placed 
close to each other with parallel optical axes. The distance vector a between the two 
optical axes is called the stereoscopic basis. 

An object will be projected onto different positions of the image plane because it is 
viewed under slightly different angles. The difference in the position is denoted as the 
parallax, p. It is easily calculated from figure 2.10: 

- r - l - d· xl + a/2 - dxl - a/2 - .!i_ 
p - X! X! - ' X3 ' X3 - a X3 • (2.34) 

(Here we do not use generalized image coordinates; see section 2.2.2.) The parallax is 
inversely proportional to the distance x3 of the object (zero for an object at infinity) 
and is directly proportional to the stereoscopic basis and the focal length of the cameras 
(di ~ f for distant objects). In my research group, we use stereo imaging to observe the 
spatial structure of small-scale water surface waves on the ocean surface. The stereo 
system has a stereoscopic basis of 200 mm; the focal length of the lenses is 100 mm. 
With these figures, we calculate from (2.34) that the change in the parallax is about 
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one sensor element of the CCD camera per 1 cm height change at a distance of 4 m. A 
stereo image taken with this system is shown in plate 6. 

The paratlax is a vector parallel to the stereoscopic basis a. On the one side, this 
has the advantage that if the two cameras are exactly orientated we know the direction 
of the parallax beforehand. On the other side, we cannot calculate the parallax in 
all cases. If an image sector does not show gray value changes in the direction of the 
stereo basis, then we cannot determine the parallax. This problern is a special case of 
the so-called aperture problern which occurs also in motion determination and will be 
discussed in detail in section 14.1.2. 

In stereo imaging, this problern can partly be overcome by using a third camera 
[Pietikäinen and HanDood, 1986]. The three images result in the three stereo bases 
which lie in different directions. As long as there are gray value changes in the images, 
we can determine the parallax from at least two stereo bases. 

Stereoimages can be viewed with different methods. First, the left and right stereo 
image can be represented in one image, if one is shown in red and the other in green. 
The viewer uses a spectacle with a red filter for the right, and a green filter for the 
left eye. In this way, the right eye observes only the green, and the left eye only the 
red image. This method - called the anaglyph method - has the disadvantage that 
no color images can be used. However, this method needs no special hardware, can be 
projected, shown on any RGB monitor, or be printed out with standard printers. The 
stereo image shown in plate 6 is presented in this way. 

Vertical stereoscopy also allows for the viewing of color stereo images [Koschnitzke et 

al., 1983]. The two component images are arranged one upon the other. When viewed 
with a prism spectacle, which refracts the image of the right eye to the upper, and the 
image of the left eye to the lower image, both images fuse into a 3-D image. 

Other stereoscopic imagers use dedicated hardware. A common principle is to show 
the left and right stereo image in fast alternation on a monitor. Synchronously, the po
larization direction of the screen is switched. The viewer wears a polarization spectacle 
which filters the correct images out for the left and right eye. 

However, the anaglyph method has the largest potential for most applications, since 
it can be used with almost any image processing workstation, the only additional piece 
of hardware needed being the red-green spectacle. A stimulating overview on scientific 
and technical applications of stereo images is given by Lorenz [1985]. 

2.2.10 Tomography 

Tomographie methods do not generate a 3-D image of an object directly, but allow 
reconstruction of the three-dimensional shape of objects using suitable methods. To
mographie methods can be thought as an extension of stereoscopy. With stereoscopy 
the depth of surfaces is only inferred, but not the 3-D shape of transparent objects. 
Intuitively, we may assume that it is necessary to view such an object from as many 
directions as possible. 

Tomographie methods use radiation which penetrates an object from different di
rections. If we use a point source {figure 2.11b), we observe a perspective or fan-beam 

projection on the screen behind the object just as in optical imaging (section 2.2.2). 
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P(112 , r) 

r 

Figure 2.11: a) Parallel projection and b) fan-beam projection in tomography. 

Such an image is taken from different projection directions by rotating the point source 
and the projection screen around the object. In a similar way, we can use parallel 
projection (figure 2.11a) which is easier to analyze but harder to realize. If the object 
absorbs the radiation, the intensity loss measured in the projection on the screen is 
proportional to the path length of the ray in the object. The 3-D shape of the object 
cannot be reconstructed from one projection. It is necessary to measure projections 
from all directions by turning the radiation source and projection screen around the 
object. 

As in other imaging methods, tomography can make use of different interactions 
between matter and radiation. The most widespread application is transmission tomo
graphy. The imaging mechanism is by the absorption of radiation, e. g., X-rays. Other 
methods include emission tomography, reflection tomography, and time-of-flight to
mography (especially with ultrasound), and complex imaging methods using nuclear 
magnetic resonance (NMR). 

2.3 Digitization 

2.3.1 Image matrix 

Digitization means sampling the gray values at a discrete set of points, which can be 
represented by a matrix. Sampling may already be happening by use of the sensor 
which converts the collected photons into an electrical signal. In a conventional tube 
camera, the image is already sampled in lines, as an electron beam scans the imaging 
tube line by line. The number of lines per image is fixed by television standards (see 
appendix B). A CCD-camera already has a matrix of discrete sensors. Each sensor is a 
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sampling point on a 2-D grid. The standardvideo signal is, however, an analog signal. 
Consequently, we lose the horizontal sampling again, as the signal from a line of sensors 
is converted into an analog signal. The problems associated with this conversion and 
redigitization are discussed in appendix B. 

Mathematically, digitization is described as the mapping from a continuous function 
in IR2 onto a matrix with a finite number of elements: 

Gm,n 
m,n E lZ · 

(2.35) 

The image matrix can take different geometries. Solid state physicists, mineralogists, 
and chemists are familiar with problems of this kind. Crystals show periodic 3-D pat
terns of the arrangements of their atoms, ions, or molecules which can be classified 
due to their symmetries. In 3-D this problern is quite complex. In 2-D we have fewer 
choices. For a two-dimensional grid of the image matrix, a reetangular basis cell is al
most exclusively chosen. This is due to the fact that common image processing systems 
use square image matrices (typically 512 x 512), while the common image formats are 
reetangular (35 mm film: 24 X 36mm; video images: length ratio 3:4). 

Pixel or Pel 
A point on the 2-D grid is called a pixel or pel. Both words are ab breviations of the 
word picture element. A pixel represents the gray value at the corresponding grid 
position. The position of the pixel is given in the common notation for matrices. The 
first index, m, denotes the position of the row, the second, n, the position of the column 
(figure 2.12a). If the image is represented by an MX N matrix, the index n runs from 
0 to N - 1, the index m from 0 to M - 1. M gives the number of rows, N the number 
of columns. 

Neighborhood Relations 
On a reetangular grid, there are two possibilities to define neighboring pixels (fig
ure 2.12b and c). We can either regard pixels as neighbors when they have a joint 
edge or when they have at least one joint corner. Thus four and eight neighbors exist, 
respectively, and we speak of a 4-neighborhood or an 8-neighborhood. 

Both definitions are needed. This can be seen if we study adjacent objects. An object 
is called adjacent when we can reach any pixel in the object by walking to neighboring 
pixels. The black object shown in figure 2.12d is adjacent in the 8-neighborhood, but 
constitutes two objects in the 4-neighborhood. The white background, however, shows 
the same feature at the questionable position, where the object might either be adjacent 
or not. Thus the inconsistency arises, that we may have either two crossing adjacent 
objects in the 8-neigborhood or two separated objects in the 4-neighborhood. This 
difficulty can be overcome if we declare the objects as 4-neighboring and the background 
as 8-neighboring, or vice versa. 

These complications are a special feature of the reetangular grid. They do not 
occur with a hexagonal grid (figure 2.12e). On a hexagonal grid, we can only define 
a 6-neighborhood, since pixels which have a joint corner, but no joint edge, do not 
exist. Neighboring pixels have always one joint edge and two joint corners. Despite this 
advantage, hexagonal grids are hardly used in image processing, as the hardware does 
not support them. 
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Figure 2.12: a) Each square in the image matrix represents a pixel; the pixel positions are numbered 
as denoted. b) 4-neighbors; c) 8-neighbors; d) Istheblack object adjacent? e) A discrete hexagonal 
grid. 
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a) b) 

Figure 2.13: Straight lines on discrete geometries: a) square grid; b) hexagonal grid. 

lJiscrete Cieor.netry 
The difficulties discussed in the previous section result from the fact that the image 
matrix constitutes a discrete structure where only points on the grid are defined. The 
discrete nature of the image matrix causes further problems. 

Rotations on a discrete grid are defined only for certain angles, when all points of 
the rotated grid coincide with grid points. On a reetangular grid, only a rotation of 180° 
is possible, on a square grid in multiples of 90°, and on a hexagonal grid in multiples 
of 60°. 

Equally difficult is the presentation of straight lines. Generally, a straight line can 
only be represented as a jagged, staircase-like sequence of pixels (figure 2.13). These 
difficulties lead not only to ugly images of lines and boundaries, but also force us to 
consider very carefully how we determine the direction of edges, the circumference and 
area of objects. In general that is how we handle all the questions concerning the shape 
of objects. 

Problems related to the discrete nature of digitized images are common to both 
image processing and computer graphics. While the emphasis in computer graphics is 
on a better appearance of the images, e. g., to avoid jagged lines, researchers in image 
processing focus on accurate analysis of the form of objects. The basic knowledge 
worked out in this chapter will help to deal with both problems. 

2.3.2 Moire-Effect and Aliasing 

Digitization of a continuous image constitutes an enormous loss of information, since 
we reduce the information about the gray values from an infinite to a finite number 
of points. Therefore the crucial question arises as to which condition we can ensure 
that the sampled points are a valid representation of the continuous image, i. e., there 
is no loss of information. We also want to know how we can reconstruct a continuous 
image from the sampled points. We will approach these questions by first studying the 
distortions which result from improper sampling. 

Intuitively, it is clear that sampling leads to a reduction in resolution, i. e., structures 
of about the scale of the sampling distance and finer will be lost. It might come as 
a surprise to know that considerable distortions occur if we sample an image which 
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Figure 2.14: The MoirE\-effect: the left image shows the original image, two linear grids with different 
grid constants. In the right image, digitization is simulated by overlaying a 2-D grid over part of the 
left image. 
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Figure 2.15: Demonstration of the aliasing effect: an oscilliatory signal is sampled with a sampling 
distance ßx equal to 19/20 of the wavelength. The result is an aliased wavelength which is 20 times 
the sampling distance. 

contains fine structures. Figure 2.14 shows a simple example. Digitization is simulated 
by overlaying a 2-D grid on the object comprising two linear grids with different grid 
constants. After sampling, both grids appear to have grid constants with different 
periodicity and direction. This kind of image distortion is called the Moire-effect. 

The same phenomenon, called aliasing, is known for one-dimensional signals, espe
cially time series. Figure 2.15 shows a signal with a sinusoidal oscillation. It is sampled 
with a sampling distance which is slightly smaller than its wavelength. As a result we 
can observe a much !arger wavelength. 
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Whenever we digitize analog data, these problems occur. It is a general phenomenon 
of signal processing. In this respect, only image processing is a special case in the more 
general field of signal theory. 

Since the aliasing effect has been demonstrated with periodic signals, the key to 
understand and thus to avoid it, is by an analysis of the digitization process in Fourier 
space. In the following, we will perform this analysis step by step. As a result, we can 
formulate the conditions under which the sampled points are a correct and complete 
representation of the continuous image in the so-called sampling theorem. The following 
considerations are not a strict mathematical proof of the sampling theorem but rather 
an illustrative approach. 

2.3.3 The Sampling Theorem 

Our starting point is an infinite, continuous image g(z), which we want to map onto a 
finite matrix Gm,n· In this procedure we will include the image formation process, which 
we discussed in section 2.2. We can then distinguish three separate steps: imaging, 
sampling, and the limitation of a finite image matrix. 

Image Formation 
Digitization cannot be treated without the image formation process. The optical sys
tem, including the sensor, infiuences the image signal so that we should include the 
effect in this process. 

Digitization means that we sample the image at certain points of a discrete grid, 
:Cm,n· If we restriet our considerations to reetangular grids, these points can be written 
as: 

(2.36) 

Generally, we do not collect the illumination intensity exactly at these points, but in 
a certain area around them. As an example, we take a CCD camera, which consists 
of a matrix of directly neighboring photodiedes without any light insensitive strips in 
between. We further assume that the photodiedes are uniformly and equally sensi
tive. Then g'(z) at the imageplane will be integrated over the area of the individual 
photodiodes. This corresponds to the operation 

(m+1/2)~x1 (n+l/2)~"'2 

g(:cm,n) = J dx1 J dx2 g'(z). 
(m-1/2)~!1:'1 (n-1/2)~"'2 

(2.37) 

This operation includes convolution with a reetangular box funct~on and sampling at 
the points of the grid. These two steps can be separated. We · can first perform the 
continuous convolution and then the sampling. In this way we can generalize the image 
formation process and separate it from the sampling process. Since convolution is an 
associative operation, we can combine the averaging process of the CCD sensor with 
the PSF of the optical system (section 2.2.6) in a single convolution process. Therefore 
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Figure 2.16: Derivation of the sampling theorem I: schematic illustration of the imaging and sampling 
process in the x and k spaces. 
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we can describe the image formation process by the following operation: 

00 

g(z) = j d2x' g'(z')h(z- z') = g'(z) * h(z) 
-oo 

! (2.38) 

g(k) = g'(k)h(k), 

where h(z) and h(k) are the resulting PSF and OTF, respectively, and g'(z) can be 
considered as the gray value image obtained with a perfect sensor, i. e., an optical system 
(including the sensor) whose OTF is identically 1 and whose PSF is a <5-function. 

Generally, the image formation process results in a blurring of the image; fine details 
are lost. In Fourier space this leads to an attenuation of high wave numbers. The 
resulting gray value image is called bandlimited. 

Sampling 
Now we perform the sampling. Sampling means that all information is lost except at 
the grid points. Mathematically, this constitutes a multiplication of the continuous 
function which is zero everywhere except for the grid points. This operation can be 
performed by multiplying the image function g( z) with the sum of <5 functions located 
at the grid points Zm,n (2.36). This function is called the two-dimensional <5 comb, or 
"nail-board function"(figure 2.16). Then sampling can be expressedas 

(2.39) 

g.(k) = Lg(k- ku,v), 
u,v 

where 

Pku,v = (2.40) 

are the points of the so-called reciprocal grid, which plays a significant role in solid state 
physics and crystallography. According to the convolution theorem, multiplication of 
the image with the 2-D <5 comb corresponds to a convolution of the Fourier transform 
of the image, the image spectrum, with another 2-D <5 comb, whose grid constants are 
reciprocal to the grid constants in x space (see (2.36) and (2.40)). A dense sampling 
in x space yields a wide mesh in the k space, and vice versa. Consequently, sampling 
results in a reproduction of the image spectrum at each point of the grid (figure 2.16). 

Now we can formulate the condition where we get no distortion of the signal by 
sampling. If the image spectrum is so extended that parts of it overlap with the period
ically repeated copies, then the overlapping parts are alternated. We cannot distinguish 
whether the spectral amplitudes come from the original spectrum at the center or from 
one of the copies. In order to obtain no distortions, we must avoid overlapping. 

A safe condition to avoid overlapping is as follows: the spectrum must be restricted 
to the area which extends around the central grid point up to the lines parting the area 
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Figure 2.18: Explanation of the Moir6-effect with a periodic structure which does not meet the sampling 
condition. 

between the central grid point and all other grid points (figure 2.16). (In solid state 
physics this zone is called the first Brillouin zone [Kittel, 1971].) On a reetangular grid, 
this results in the simple condition that the maximum wave number at which the image 
spectrum is not equal to zero, must be restricted to less than half of the grid constants 
of the reciprocal grid: 

If the spectrum g(k) of a continuous function g(z) is bandlimited, i. e., 

then it can be reconstructed exactly from samples with a distance 

Llx; = 21r JP k;. 

{2.41) 

{2.42) 

In other words, we will obtain a periodic structure correctly only if we take at 
least two samples per wavelength. The maximum wave number which can be sampled 
without errors is called the Nyquist or limiting wave number. In the following, we will 
often use wave numbers which are scaled to the limiting wave number. We denote this 
scaling with a tilde: 

- k·Llx· k .- _. __ • .- 'Ir 
{2.43) 

In this scaling all components of the wave number k; fall into the ]-1, 1[ interval. 

Explanation of the Moire-Effect 
Considerations from the previous section can now be used to explain the MoirC- and 
aliasing effect. We start with a periodic structure which does not meet the sampling 
condition. The unsampled spectrum contains a single peak, which is marked with the 
long vector k in figure 2.18. Because of the periodic replication of the sampled spectrum, 
there is exactly one peak, at k', which lies in the central cell. Figure 2.18 shows that 
this peak does not only have another wavelength, but in general another direction, as 
observed in figure 2.14. 
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The observed wave number k' differs from the true wave number k by a grid trans
lation vector ku,v on the reciprocal grid. u and v must be chosen to meet the condition 

lkl + u Pkll < Pkt/2 
(2.44) 

According to this condition, we yield an aliased wave number 

k' = k- Pk = 19/20 Pk- Pk = -1/20 Pk (2.45) 

for the one-dimensional example in figure 2.15, as we just observed. 
The sampling theorem, as formulated above, is actually too strict a requirement. A 

sufficient and necessary condition is that the periodic replications of the non-zero parts 
of the image spectra must not overlap. 

Limitation to a Finite Window 
So far, the sampled image is still infinite in size. In practice, we can only work with 
finite image matrices. Thus the last step is the Iimitation of the image to a finite window 
size. The simplest case is the multiplication of the sampled image with a box function. 
More generally, we can take any window function w(z) which is zero for sufficient large 
z values: 

gz(z) = Ys(z) · w(z) 

! (2.46) 

9z(k) = 9s(k) * w(k). 

In Fourier space, the spectrum of the sampled image will be convolved with the Fourier 
transform of the window function (figure 2.17). Let us consider the example of the 
box window function in detail. If the window in the x space includes M X N sampling 
points, its size is M ßx1 x N ßx2 • The Fourier transform of the 2-D box function is the 
2-D sinc function (see appendix A.2). The main peak of the sinc function has a half
width of 21r f(M ßx1 ) x 21r f(N ßx2). A narrow peak in the spectrum of the imagewill 
become a 2-D sinc function. Generally, the resolution in the spectrum will be reduced 
to the order of the half-width of the sinc function. 

In summary, sampling leads to a Iimitation of the wave number, while the limitation 
of the image size determines the wave number resolution. Thus the scales in x and k 
space are reciprocal to each other. The resolution in the x space determines the size in 
the k space, and vice versa. 

2.3.4 Reconstruction from Sampies 

One task is missing. The sampling theorem ensures the conditions under which we can 
reconstruct a continuous function from sampled points, but we still do not know how to 
perform the reconstruction of the continuous image from its samples, i. e., the inverse 
operation to sampling. 

Reconstruction is performed by a suitable interpolation of the sampled points. Gen
erally, the interpolated points Yr ( z) are calculated from the sampled values g( Zm,n) 
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weighted with suitable factors depending on the distance from the interpolated point: 

(2.47) 
m,n 

Using the integral properties of the Ö function, we can substitute the sampled points 
on the right side by the continuous values: 

00 

9r(z) = L J d2x' g(z')h(z- :c')ö(:cm,n- :c') 
m,n_ 00 

_l d2x' h( :V - :c') (~ö( Zm,n - z')g( :c')) . 

The last integral means a convolution of the weighting function h with a sum of the im
age function g replicated at each grid point in the x space. In Fourier space, convolution 
is replaced by complex multiplication: 

(2.48) 
u,v 

The interpolated function ca·.mot be equal to the original image, if the periodically 
repeated image spectra are overlapping. This is nothing new; it is exactly the state
ment of the sampling theorem. The interpolated image function is only equal to the 
original image function if the weighting function is a box function with the width of the 
elementary cell of the reciprocal grid. Then only one term unequal to zero remains at 
the right side of (2.48): 

(2.49) 

The interpolation function is the inverse Fourier transform of the box function 

h( :c) = sin 1r xd 6.x1 sin 7rX2/ 6.x2 

1rxd 6.x1 1rx2/ 6.x2 · 
(2.50) 

This function performs only with 1/x towards zero. A correct interpolation requires 
a large image area; mathematically, it must be infinite large. This condition can be 
weakened if we "overfill" the sampling theorem, i.e., ensure that g(k) is already zero 
before we reach the Nyquist wave number. According to (2.48), we can then choose 
h(k) arbitrarily in the region where g vanishes. We can use this freedom to construct 
an interpolation function which decreases more quickly in the x space, i. e., it has 
a minimum-length interpolation mask. We can also start from a given interpolation 
formula. Then the deviation of its Fourier transform from a box function tells us to 
what extent structures will be distorted as a function of the wave number. Suitable 
interpolation functions will be discussed in detail in section 8.2.4. 
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OTF 

Figure 2.19: a) PSF and b) OTF of standard sampling. 

2.3.5 Standard Sampling 

The type of sampling discussed in section 2.3.3 using the example of the ideal CCD 
camera is called standard sampling. Here the mean value of an elementary cell is 
assigned to a corresponding sampling point. It is a kind of regular sampling, since each 
point in the continuous space is equally weighted. We might be tempted to assume 
that standard sampling conforms to the sampling theorem. Unfortunately, this is not 
the case (figure 2.19). To the Nyquist wave number, the Fourier transform of the 
box function is still 1/../2. The first zero crossing occurs at double the Nyquist wave 
number. Consequently, Moire e:ffects will be observed with CCD cameras. The e:ffects 
are even more pronounced since only a small fraction - typically 20% of the chip area 
for interline transfer cameras- arelight sensitive [Lenz, 1988]. 

Smoothing over larger areas with a box window is not of much help since the Fourier 
transform of the box window only decreases with k-1 (figure 2.19). The ideal window 
function for sampling is identical to the ideal interpolation formula (2.50) discussed 
in section 2.3.4, since its Fourier transform is a box function with the width of the 
elementary cell of the reciprocal grid. However, this windowing is impracticable. We 
will consider this matter further in our discussion of smoothing filters in section 6.1. 
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3.1 Introduction 

Fourier transform, i. e., decomposition of an image into periodic structures, proved 
to be an extremely helpful tool to understanding image formation and digitization. 
Throughout the whole discussion in the last chapter we used the continuous Fourier 
transform. Proceeding now to discrete imagery, the question arises whether there is a 
discrete analogue to the continuous Fourier transform. Such a transformation would 
allow us to decompose a discrete image directly into its periodic components. 

In continuous space, the image is represented equivalently in the space and Fourier 
domain. As an introduction to a discrete Fourier space, we will first consider the effects 
of sampling in Fourier space. Since the back transformation is - except for the sign 
of the k~rnel - the same as for the forward transformation (see appendix A.2), we 
can follow the route as for sampling in the space domain. By interchanging the roles 
of space and wave number domain, we can write the sampling theorem for the wave 
number domain directly (compare equation (2.41)): 

lf a function g(x) is finite, i. e., 

(3.1) 

then it can be reconstructed exactly from samples of its Fourier transform, g(k), with a 
distance 

(3.2) 

As in the spatial domain, we limit the infinite Fourier domain by a window function. 
Multiplication in the Fourier domain corresponds to a convolution in the space domain 
with the inverse Fourier transform of the window function. This convolution process 
results in a smoothing, i. e., limitation of the resolution, an effect we expected since 
we attenuate or remove high wave numbers entirely by multiplication with the window 
function in the Fourier domain. 

Comparing the effects of the limitation of a continuous function in either of the 
two domains, we conclude that they have a corresponding effect in the other domain. 
Thus we might suspect that a transformation on the discrete data, i. e., matrices, may 
exist which shows very similar features to the continuous Fourier transform. This 
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transformation is called the discrete Fourier transform, or DFT. The relation between 
the grid constants and sizes in the space and wave number domains are given by 

Pk1 = Mßk1 = 21rjßx1 

Pk2 = N ßk2 = 21r/ ßx2 

Px1 = Mßx1 = 21rjßk1 

Px2 = N ßx2 = 21r / ßk2. 
(3.3) 

The subject of this chapter is rather mathematical, but is significant for a greater 
understanding of image processing. We will try to treat the subject illustratively and to 
focus on several aspects which are important for practical application. We will discuss 
in detail the special features of the DFT of real-valued images, the importance of phase 
and amplitude of the DFT, and several fast algorithms to calculate the DFT. The reader 
will find references to a more rigorous mathematical treatment in appendix A.3. This 
appendix also includes a ready-to-use summary of the theorems of DFT and important 
special functions used in image processing. 

3.2 The Discrete Fourier transform (DFT) 

3.2.1 The one-dimensional DFT 

First, we will consider the one-dimensional Fourier transform. The DFT maps an 
ordered M-tupel of complex numbers g;, the complex-valued vector g, 

(3.4) 

onto another vector fJ of a vector space with the same dimension M. 

1 M-1 ( 21ri mu) 
flu = M L 9m exp -~ , 

m=O 

0 ~ u < M. (3.5) 

The back transformation is given by 

M-1 (21ri mu) 
9m = L flu exp ~ , 

u=O 

0 ~ m < M. (3.6) 

The expressions in (3.5) and (3.6) with which the vectors are multiplied are called the 
kerne! of the DFT. We can consider the DFT as inner products of the vector g with a 
set of M vectors 

1 
b,.. = M 

1 

exp et") 
exp (21rj}u) 

( hi (M-1)u) exp M 

0 ~ u < M. (3.7) 
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The elements of these vectors are conveniently abbreviated using 

Then we can write: 

(27ri) 
WM=exp M . 

W(M-l)u 
M 

Using the definition for the inner product 

the DFT reduces to 

M-1 

(g, h} = 2: Ymh;,. = gh*, 
m=O 

g" = (g, b"} = g b: . 
'-..r' '-..r' 
lxM Mxl 
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(3.8) 

(3.9) 

(3.10) 

(3.11) 

Used with a scalar, the superscript * denotes the complex conjugate; used with a vector 
or matrix, it denotes the complex conjugate and transposed vector or matrix. Here we 
consider vectors as special cases of matrices. Column (g) and row (gT or g*) vectors 
are equivalent to M X 1 and 1 X M matrices, respectively. 

Then the scalar product is a special matrix multiplication between a column and a 
row vector resulting in a scalar. 

The M vectors b" are orthogonal to each other 

(3.12) 

Consequently, the set b" forms a basis for the vector space, which means that each 
vector of the vector space can be expressed as a linear combination of the basis vectors. 
The DFT calculates the projections of the vector g onto all the basis vectors directly, 
i. e., the components of g in the direction of the basis vectors. In this sense, the DFT 
is just a special type of coordinate transformation in an M -dimensional vector space. 
Mathematically, the DFT differs from more familiar coordinate transformationssuch as 
rotation in a three-dimensional vector space (section 2.2.1, see also section 2.2.3) only 
because the vector space is over the field of the complex instead of real numbers. 

The real and imaginary part of the basis vectors are sampled sine and cosine func
tions of different wavelengths (figure 3.1 ). The index u denotes how often the wavelength 
of the function fits into the interval [0, M]. Only wavelengths with integer fractions of 
the intervallength M occur. The basis vector b0 is a constant real vector. 
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0 

Figure 3.1: Basis functions of the DFT for M = 16; real part (cosine function) left, imaginary part 
(sine function) right. 

3.2.2 The Two-Dimensional DFT 

In two dimensions, the DFT maps an MX N matrix with complex components onto 
another matrix of the same size: 

1 M-IN-I ( 21ri mu) ( 21ri nv) -l:l:G exp --- exp ---
MN m=On=O m,n M N 

(3.13) 

In the second line, the abbreviation defined in (3.8) is used. As in the one-dimensional 
case, the DFT expands a matrix into a set of basis matrices which spans the N x M
dimensional vector space over the field of complex numbers. The basis matrices are of 
the form 

Bu,v = 
.._"_, 

MxN 

1 
MN 

1 
WM
Wlf 

w17-l)u 

[1 W " W2" W(N-l)vl ' N• N, ... , N 

~N~~-
MxlixN 

(3.14) 
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In this equation, the basis matrices are expressed as an out er product between a column 
and a row vector which are the basis vectors of the one-dimensional DFT. Kerneis with 
this property are called separable kernels. 

The inverse DFT is given by 

M-lN-1 

Gmn = L: L:Gu,vWM"W_Nv. (3.15) 
u=O v=O 

The theorems of the DFT are very similar to the corresponding theorems of the 
continuous Fourier transform and are summarized in appendix A.3. In this section we 
focus on additional properties of the DFT which are of importance when we want to 
apply the DFT to image data. 

3.2.3 Periodicity 

The kernel of the DFT shows a characteristic periodicity 

exp ( _ 21ri(m: kM))= exp ( _ 2~m), Vk E JZ. (3.16) 

The definitions of the DFT restriet the space and Fourier domain to an MX N matrix. 
If we do not care about this restriction and calculate the forward and back transforma
tion for indices with unrestricted integer numbers, we find the same periodicities from 
(3.13) and (3.15): 

wave number domain Gu+kM,v+IN = G",v, 
space domain Gm+kM,n+IN = Gm,n, 

Vk,l E 1Z 
Vk,l E JZ. 

(3.17) 

These equations state a periodic extension in both domains beyond the original matri
ces. In sections 2.3.3 and 3.1 we obtained the very same result with our considerations 
about sampling in the space and wave number domain. 

The periodicity of the DFT gives rise to an interesting geometric interpretation. In 
the one-dimensional case, the border points 9M-l and 9M = fo are neighboring points. 
We can meet this property geometrically if we draw the points of the vector not on a 
finite line but on a circle, the so-called Fourier ring (figure 3.2a). This representation 
has a deeper meaning when we consider the Fourier transform as a special case of the 
z-transform [ Oppenheim and Schafer, 1989]. With two dimensions, this can lead to a 
mapping of the matrix onto a torus (figure 3.2b ), the Fourier torus. 

3.2.4 Symmetry 

The study of symmetries is important for practical purposes. Careful consideration of 
symmetry allows storage space to be saved and algorithms to be speeded up. After 
a general introduction to symmetries with discrete functions, we discuss the DFT of 
real-valued images. 
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a) b) 

Figure 3.2: Geometrie interpretation of the periodicity of the one- and two-dimensional DFT with 
a) the Fourier ring and b) the Fourier torus. 

In continuous space, Fourier transform conserves the symmetry of functions. The 
Fourier transform of an even or odd function 

g(z) = ±g( -z) (3.18) 

remains even or odd. In the discrete and finite space, for which the DFT is defined, we 
first must find an appropriate definition for symmetries. The direct analogue, 

Gmn = ±G -m,-n, (3.19) 

is not appropriate, because negative indices lie outside of definition range. However, we 
can make use of the periodicity property (3.17). Then we find the index ( -m, -n) at 
( M - m, N - n) within the matrix and define the symmetry condition 

(3.20) 

for even ( + sign) and odd (- sign) functions. The symmetry center lies at the point 
(M/2,N/2). 

The complex-valued basis vectors of the DFT also show symmetries. While the real 
part (cosine function) is even, the imaginary part (sine function) is odd [(figure 3.1), 
(3.7) and (3.14)]. This kind of symmetry for complex valued functions is called Hermi
tian. 

After these general considerations, we can study the DFT of real-valued images in 
more detail. From the Hermitian symmetry of the basis vectors of the DFT, we can 
conclude that realcvalued functions also exhibit a Hermitian DFT: 

(3.21) 
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Figure 3.3: Representation of the spectrum of an image: a) Fourier transformed image; b) original 
image; c) remapped spectrum to consider negative values of one component of the wave number. 

The complex-valued DFT of real-valued matrices is therefore completely determined 
by the values in one half space. The other half space is obtained by mirroring at the 
symmetry center (M/2, N /2). Consequently, we need the same amount of storage place 
for the DFT of a real image as for the image itself. 

At first glance, the basis functions of the DFT in figure 3.1 seem to contradict the 
sampling theorem. The sampling theorem states that a periodic structure must be 
sampled at least twice per wavelength. This condition is only met for the first half of 
the basis functions (indices 0 to 8), but not for the second half. We can resolve this 
apparent discrepancy by reindexing the vector. Using the periodicity property (3.17), 
we can change the indices in the interval [M/2,M -1] to [-M/2, -1]. Now the indices, 
except for the minus sign, directly reflect the period of the basis functions (figure 3.1 ). 
The indices now lie in the interval [-M/2, M/2-1]; all basis vectors meet the sampling 
theorem. 

However, what is the meaning of negative frequencies and wave numbers, respec
tively? For real physical phenomena they make no sense. But as the spectrum of a real 
vector is Hermitian, we can just pick out the part with the positive wave numbers. 

In two and higher dimensions, matters are slightly more complex. The spectrum of a 
real-valued image is determined completely by the values in one half space. This means 
that one component of the wave number can be negative, but that we cannot distinguish 
between k and -k, i. e., between wave numbers which only differ in sign. Therefore 
we can represent power spectra of real-valued images in a half space, where only one 
component of the wave number includes negative values. For proper representation of 
the spectra with zero values of this component in the middle of the image, it is necessary 
to interchange the upper (positive) and lower (negative) parts of the image (figure 3.3). 

An image sequence can be regarded as a three-dimensional image with two space 
and one time coordinates. Consequently, the DFT results in a spectrum with two wave 
numbers and one frequency coordinate. For real-valued image sequences, again we need 
only a half space to represent the spectrum. Physically, it makes most sense to choose 
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a) b) 

-H-+-t-+-HH-+-+-+-H~ k, 

Figure 3.4: Representation of the Fourier domain in a) Cartesian and b) log-polar coordinate system. 

the half space which contains positive frequencies. In contrast to a single image, we 
obtain the full wave number space. Now we can identify the spatially identical wave 
numbers k and -k as structures propagating in opposite directions. 

3.2.5 Dynamical Range of the DFT 

While in most cases it is su:fficient to represent an image with 256 quantization levels, 
i. e., one byte per pixel, the Fourier transform of an image needs a much larger dynamical 
range. Typically, we observe a strong decrease of the Fourier components with the 
magnitude of the wave number (figure 3.3). Consequently, at least 16-bit integers or 
32-bit floating-point numbers are necessary to represent an image in the Fourier domain 
without significant rounding errors. 

The reason for this behavior is not the insignificance of high wave numbers in images. 
If we simply omit them, we blur the image. The decrease is caused by the fact that the 
relative resolution is increasing. It is natural to think of relative resolutions, because 
we are better able to distinguish relative distance differences than absolute ones. We 
can, for example, easily see the difference of 10 cm in 1m, but not in 1 km. If we apply 
this concept to the Fourier domain, it seems to be more natural to represent the images 
in a so-called log-polar coordinate system as illustrated in figure 3.4. A discrete grid in 
this coordinate system separates the space into angular and logk intervals. Thus the 
cell area is proportional to k2 • In order to preserve the norm, the Fourier components 
need to be multiplied by k2 in this representation: 

00 00 

j dk1dk2 lg(kW = j dlnkdcp k2 lg(kW. (3.22) 
-oo -oo 

If we assume that the power spectrum lg( k W is flat in the naturallog-polar coordinate 
system, it will decrease with k-2 in the Cartesian coordinates. 

For a display of power spectra, it is common to take the logarithm of the gray values 
in order to compress the high dynamic range. Our considerations in this section suggest 
that a multiplication with k2 is a valuable alternative. Likewise, representation in the 
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a) 

Figure 3.5: Power spectrum of an image in a) Cartesian and b) log-polar coordinate system. 

log-polar coordinate systems allows a much better evaluation of the directions of the 
spatial structures and the smaller scales (figure 3.5). 

3.2.6 Phase and Amplitude 

As outlined above, the DFT can be regarded as a coordinate transformation in a finite
dimensional vector space. Therefore, the image information is completely conserved. 
We can perform the inverse transformation to obtain the original image. In Fourier 
space, we observe the image from another "point of view". Each point in the Fourier 
domain contains two pieces of information: the amplitude and the phase, i. e., rela
tive position, of a periodic structure. Given this composition, we are confronted with 
the question as to whether the phase or amplitude contains more information of the 
structure in the image, or whether both are of equal importance. In order to answer 
this question, we perform a simple experiment. Figure 3.6a shows part of a building 
at Heidelberg University. We calculate the DFT of this image and then arbitrarily 
change either the phase or the amplitude of the Fourier component and then perform 
the inverse DFT. 

First, we arbitrarily set the amplitude proportional to k-1 (figure 3.6b) or k- 312 

(figure 3.6c), but leave the phase unchanged. The images become somewhat stained, 
and in case of 1.9( k) I cx: k-3/ 2 also blurred, but otherwise we can still recognize all the 
details. 

Second, we keep the amplitude of the spectrum, but change the phase by replacing 
it with random numbers with the exception of the first row (figure 3.6d). Consequently, 
only the phase of horizontally orientated structures is kept unchanged. The arbitrary 
change causes significant e:ffects: we can no Ionger recognize the image except for the 
coarse horizontal dark/bright pattern which corresponds to the Fourier components 
whose phase was not changed. 

From this experiment, we can conclude that the phase of the Fourier transform 
carries essential information about the image structure. The amplitude alone implies 
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Figure 3.6: The importance ofphase and amplitude for the image contents: a) original image; b) back 
transformed image with unchanged phase but an amplitude arbitrarily set to lu(k)l oc k- 1 ; c) as b), 
but with lu(k)l oc k- 312 ; d) unchanged amplitude and random phase. 

only that such a. periodic structure is conta.ined in the iroa.ge but not where. We ca.n also 
illustra.te this iroportant fact with the shift theorero (see appendix A.3). A shift of an 
object in the space doroain leads to a shift of the phase in the wave nurober doroain. If 
we do not know the phase of its Fourier coroponents, we know neither what the object 
looks like nor where it is located. 

Froro these considerations we can conclude that the power spectrum, i. e., the squared 
aroplitudes of the Fourier coroponents, contains only very little inforroation, since all 
the phase inforroation is lost. The power spectruro only indicates the aroplitude of the 
wave nurobers. If the gray value can be associated with the aroplitude of a physical 
process, say a harroonic oscillation, then the power spectruro gives us the distribution 
of the energy in the wave nurober doroain. 



3.3 Discrete Unitary Transforms 63 

3.3 Discrete U nitary Transforms 

3.3.1 General Properties 

In section 3.2.1, we learnt that the discrete Fourier transform can be regarded as a linear 
transformation in a vector space. Thus it is only an example of a large dass of trans
formations, called unitary transforms. In this section, we discuss some of their general 
features which will be of help for a deeper insight into image processing. Furthermore, 
we give examples of other unitary transforms which have gained some importance in 
digital image processing. 

Unitary transforms are defined for vector spaces over the field of complex numbers, 
for which an inner product is defined. Implicitly, we have already used the inner or dot 
product for vectors. Let g and h be two vectors of an M-dimensional vector space over 
the field of complex numbers. Then the standardinner product is defined as 

M-1 

(g,h} = gh* = L9mh';,.. (3.23) 
m=O 

This definition can be extended for matrices with the following definition: 

M-1N-1 

(G,H} = L LGmnH;,.n. (3.24) 
m=On=O 

The inner product for matrices is closely related to the trace function 

M-1 

tr(G) = LGmm (3.25) 
m=O 

by 
(G,H) = tr(GH*) = tr(G*H). (3.26) 

Now we can define the unitary transform: 
Let V be a finite-dimensional inner product vector space. Let U be a one-one linear 

transformation of V onto itself. Then the following are equivalent. 
1. U is unitary. 
2. U preserves the inner product, i. e., (g,h) = (Ug,Uh), Vg,h E V. 
3. The inverse of U, u-I, is the adjoint of U, U*: UU* =I. 

In the definition given, the most important properties of a unitary transform are 
already incorporated: an unitary transform preserves the inner product. This includes 
that another important property, the norm, is also preserved 

IIYII = (g,g)112 = (Ug,Ug) 112 • (3.27) 

It is appropriate tothink of the norm as the length or magnitude of the vector. Rotation 
in IR2 or IR3 is an example for a unitary transform where the preservation of the length 
of the vectors is obvious ( compare also the discussion of homogeneous coordinates in 
section 2.2.3). 
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The product of two unitary transforms, U 1 U 2 , is unitary. Since the identity operator 
I is unitary as weil as the inverse of a unitary operator, the set of all unitary transforms 
on an inner product space is a 9roup under the operation of composition. In practice, 
this means that we can compose/decompose complex unitary transforms from/into 
simpler or elementary transforms. 

We will illustrate some of the properties of unitary transforms discussed with the 
discrete Fourier transform. First we consider the one-dimensional DFT (3.5): 

1 M-1 

Yu = M L:9mWMmu. 
m=O 

This equation can be regarded as a multiplication of an M X M matrix W M (Wmu = 
WM-m") with the vector g: 

iJ = WMY· (3.28) 

Explicitly, the DFT for an 8-dimensional vector is given by 

Yo wo wo wo wo wo wo wo wo 9o 
Y1 wo W7 ws ws W4 w3 W2 W1 91 
Y2 wo ws W4 W2 wo ws W4 W2 92 
93 wo ws w2 w7 W4 W1 ws w3 93 (3.29) 
94 wo W4 wo W4 wo W4 wo W4 94 
Ys wo w3 ws W1 W4 w7 W2 ws 95 
Ys wo w2 W4 ws wo W2 W4 ws 96 
Y1 wo w1 w2 w3 w4 ws ws w7 97 

We omitted the subscript M for W to keep the matrix elements more simple and made 
use of the periodicity of the kernel of the DFT (3.16) to limit the exponents of W 
between 0 and 7. The transformation matrix for the DFT is symmetric (W = WT), 
but not Hermitian (W = W*). 

For the two-dimensional DFT, we can write similar equations if we map the M x N 
matrix onto an MN-dimensional vector. There is, however, a simpler way if we make 
use of the separability of the kernel of the DFT as expressed in (3.13). Using the MX M 
matrix W M and the N X N matrix W N analogously as in the one-dimensional case, 
we can write (3.13) as 

or, in matrix notation, 
A T 

G =WM G WN=WMGWN . .......,.., ....__. .......,.., '-.-' 
MxN MxM MxN NxN 

(3.30) 

(3.31) 

Physicists will be reminded of the theoretical foundations of quantum mechanics 
which are formulated in an inner product vector space of infinite dimension, the Hilbert 
space. In digital image processing, the difficulties associated with infinite-dimensional 
vector spaces can be avoided. A detailed discussion of the mathematics of unitary 
transforms with respect to digital image processing can be found in Jaroslavskij [1985]. 
Hoffmann and Kunze [1971] discuss inner product spaces and unitary operators in detail 
in their dassie textbook on the foundations of linear algebra. 
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3.3.2 Further Examples for Unitary Transforms 

After discussing the general features of unitary transforms, some illustrative examples 
will be given. They will be brief as they are not as important as the diserete Fourier 
transform in digital image proeessing. 

Cosine and Sine Transform 
It is often ineonvenient that the DFT transforms real-valued to eomplex-valued images. 
We ean derive a real transformation if we deeompose the eomplex DFT into its real 
and imaginary parts: 

( 21rmu) . . ( 21rmu) 
I<mu=eos -~ +zsm -~ . (3.32) 

Neither the eosine nor the sine part is useful as a transformation kernel, sinee these 
functions do not form a basis for the veetor spaee. The eosine and sine functions only 
span the subspaees of the even and odd funetions, respeetively. We ean, however, 
artifieially define even or odd veetors if we double the dimension of the veetor spaee 
and extend the upper half of the veetor so that the veetor beeomes even or odd, i. e., 
g2M-m = ±gm, 0 < m ::=:; M. The doubling of the dimension means that the periods 
of the kernels double. The transform, however, only needs to be ealculated for the 
lower half, i. e., the dimension of the original veetor, since the other part is given by 
symmetry. The kernels for the cosine and sine transforms in an M-dimensional vector 
space are 

(?Tmu) 
eos M, 

(3.33) 

I<mu = sin c;;u) . 
Figure 3.7a and b show the basis functions of the 1-D eosine and sine funetions. From 
the graphs, it is easy to imagine that all the basis functions are orthogonal to each 
other. Beeause of the doubling of the periods, both transforms now eontain even and 
odd functions. The basis functions with half integer wavelengths fill in the functions 
with the originally missing symmetry. 

The eosinetransform has gained importanee for image data compression [Jain, 1989]. 
It is included into the standard high-eompression algorithm proposed by the Joint 
Photographie Experts Group (JPEG). 

Hadamard Transform 
The basis funetions of the Hadamard transform are orthogonal binary patterns (fig
ure 3.7e). Some of these patterns are regularreetangular waves, others are not. The 
Hadamard transform is computationally efficient, since its kernel contains only the fig
ures 1 and -1. Thus only additions and subtractions are necessary to compute the 
transform. 

If we eompare the basis functions of the DFT with the cosine, sine, and Hadamard 
transforms, we might be tempted to assume that these transforms still decompose 
the vector in larger and smaller scales. This is only partly true. Imagine that we 
shift the basis function with the largest scale (index 1) one position. It will then 
become a linear combination of many basis vectors, including those with the smallest 
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Figure 3.7: Basis functions of one-dimensional unitary transforms forM= 16-dimensional vectors: a) 
cosine transform; b) sine transform; c) Hada.mard transform; d) Haar transform. 

scales. This example demonstrates the importance of the shift theorem of the DFT (see 
appendix A.3). Changes in position do not change the amplitude of the basis vectors, 
but only its phase. 

Haar Transform 
The basis vectors of all the transforms considered so far are characterized by the fact 
that they spread out over the whole vector or image. In this sense we may denote 
these transforms as global. All locality is lost. H we have, for example, two indepen
dent objects in our image, then they will be simultaneously decomposed into these 
global patterns and will no Ionger be recognizable as two individual objects in the new 
representation. 

The Haar transform is the first example of a unitary transform which partly preserves 
some local information, since its basis functions are pairs of impulses which are non-zero 
only at the position oftheimpulse (figure 3.7d). With the Haar transform the position 
resolution is better for smaller structures. 

As in the Hadamard transform, the Haar transform is computational eflicient, since 
its kernel only includes the figures -1, 0 and 1. 
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3.4 Fast Algorithms for U nitary Transforms 

3.4.1 lmportance of Fast Algorithms 

Without an effective algorithm to calculate the discrete Fourier transform, it would not 
be possible to use the Fourier transform in image processing. Applied directly, (3.13) 
is prohibitively expensive. Each point in the transformed image requires M 2 complex 
multiplications and M 2 -1 complex additions (not counting the calculation of the cosine 
and sine functions in the kernel). In total, we need M 4 complex multiplications and 
M 2 (M2 - I) complex additions. 

Counting only the multiplications, a PC performing 40 000 real multiplications per 
second would need about two months to transform a single 512 x 512 image. Even 
on a super computer with a computational power of 1000 MFLOPS (million floating 
point Operationsper second) the computation would take about three minutes. These 
figures emphasize the urgent need to minimize the number of computations by choosing 
a suitable algorithm. This is an important topic in computer science. In order to do 
so we must study the inner structure of a given task, its computational complexity, and 
try to find out how it may be solved with the minimum number of operations. 

As an example, consider the following simple search problem. A friend lives in a 
high-rise building with M fioors. We want to find out on which fioor his apartment is 
located. Our questions will only be answered with yes or no. How many questions must 
we pose to find out where he lives? The simplest and most straightforward approach 
is to ask "Do you live on fioor m?". In the best case, our initial guess might be right, 
but it is more likely to be wrong so that the same question has to be asked with other 
fioor numbers again and again. In the worst case, we must ask exactly M- 1 questions, 
in the mean M /2 questions. With each question, we can only rule out one out of M 
possibilities. With the question "Do you live in the top half of the building?", however, 
we can rule out half of the possibilities with just one question. After the answer, we 
know that he either lives in the top or bottom half, and can continue our questioning in 
the same manner by splitting up the remaining possibilities into two halves. With this 
strategy, we need fewer questions. If the number of fioors is a power of two, say 21, we 
need exactly l questions. Thus for M fioors, we need ldM questions, where ld denotes 
the logarithm to the base of two. The strategy which has been applied recursively for 
a more efficient solution to the search problern is called divide and conquer. 

One measure of the computational complexity of a problern with M components 
is the largest power of M that occurs in the count of operations necessary to solve it. 
This approximation is useful, since the largest power in M dominates the number of 
operations necessary for large M. We speak of a zero-order problern O(M0 ), if the 
number of operations does not depend on its size, or a linear order problern O(M1 ), 

if the number of computations increases linearly with the size. The Straightforward 
solution of the search problern discussed in the previous example is that of O(M), the 
divide-and-conquer strategy of O(ldM). 
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Figure 3.8: Decomposition of a vector into two vectors containing the even and odd sampling points. 

3.4.2 The 1-D Radix-2 FFT Algorithms 

First we consider fast algorithms for the one-dimensional DFT, commonly abbreviated 
as FFT algorithms for fast Fourier transform. We assume that the dimension of the 
vector is apower of two, M = 21• Since the direct solution according to (3.5) is that 
of O(M2 ) it seems useful to use the divide-and-conquer strategy. If we can split the 
transformation into two parts with vectors the size of M /2, we reduce the number of 
operations from M 2 to 2(M/2) 2 = M 2/2. This procedure can be recursively applied 
ldM times, until we obtain a vector the size of 1, whose DFT is trivial. Of course, 
this procedure only works if the partitioning is possible and the number of additional 
operations is not of a higher order than O(M1). 

We part the vector into two vectors by choosing the even and odd elements separately 
(figure 3.8): 

M-l ( 27ri mu) 
Yu = L9mexp -~ 

m=O 

M/2- 1 ( 27ri 2nu) M/2- 1 ( 27ri (2n + 1 )u) E 92nexp - M + E 92n+lexp - M (3.34) 

M/2- 1 ( 27rinu) ( 21riu) M/2- 1 ( 21rinu) 
= E 92n exp - M/2 + exp -M E 92n+l exp - M/2 . 

Both sums constitute a DFT with M' = M /2. The second sum is multiplied with a 
phase factor which depends only on the wave number u. This phase factor results from 
the shift theorem (see appendix A.3), since the odd elements are shifted one place to 
the left. As an example, we take the basis vector with u = 1 and M = 8 (figure 3.8). 
Taking the odd sampling points, the function shows a phase shift of 7r /4. This phase 
shift is exactly compensated by the phase factor exp( -21riu/M) = exp( -Jr/4) in (3.34). 

So far the partitioning seems to be successful. The operations necessary to combine 
the partial Fourier transforms is just one complex multiplication and addition, i. e., 
O(M1 ). Some more detailed considerations are necessary, however, since the DFT over 
the half-sized vectors only yields M /2 values. In order to see how the composition 
of the M values works, we study the values for u from 0 to M/2- 1 and M/2 to 
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M - 1 separately. The partial transformations over the even and odd sampling points 
are abbreviated by •gu and 0 flu, respectively. For the first part, we can just take the 
partitioning as expressed in (3.34). For the second part, u' = u + M/2, only the phase 
factor changes. The addition by M /2 results in a change of the sign: 

exp (-2:u') = exp ( 27ri (u; M/2)) = exp (-2~ u) exp( -7ri) =- exp (-2~ u) 
or 

W -(u+M/2) _ w-u 
M -- M· 

Making use of this symmetry we can write 

flu+M/2 

•gu + W;\:,U 0 gu } 

•gu- W_it 0 flu· 
0 ~ u < M/2. (3.35) 

The Fourier transforms for the indices u and u + M/2 only differ by the sign of 
the second term. Thus for the composition of two terms we only need one complex 
multiplication. The partitioning is now applied recursively. The two transformations 
of the M/2-dimensional vectors are parted again into two transformations each. We 
obtain similar expressions as in (3.34) with the only difference being that the phase 
factor has doubled to exp[-(27riu)/(M/2)]. The even and odd parts of the even vector 
contain the points {0,4,8, .. · ,M/2- 4} and {2,6, 10, .. · ,M/2- 2}, respectively. 

In the last step, we decompose a vector with two elements into two vectors with one 
element. Since the DFT of a single-element vector is an identical operation (3.5), no 
further calculations are necessary. 

After the decomposition is complete, we can use (3.35) recursively with appropriate 
phase factors to compose the original vector step by step in the inverse order. In the 
first step, we compose vectors with just two elements. Thus we only need the phase 
factor for u = 0 which is equal to one. Consequently, the first composition step has a 
very simple form: 

(3.36) 

The algorithm we have discussed is called a decimation-in-space FFT algorithm, 
since the signal is decimated in the space domain. All steps of the FFT algorithm 
are shown in the signal flow diagram in figure 3.9 for M = 8. The left half of the 
diagram shows the decimation steps. The first column contains the original vector, the 
second the result of the first decomposition step into two vectors. The vectors with 
the even and odd elements are put in the lower and upper halves, respectively. This 
decomposition is continued until we obtain vectors with one element. As a result of 
the decomposition, the elements of the vectors are arranged in a new order. We can 
easily understand the new ordering scheme if we represent the indices of the vector with 
dual numbers. In the first decomposition step we order the elements according to the 
least significant bit, first the even elements (least significant bit is zero ), then the odd 
elements (least significant bit is one). With each further decomposition step, the bit 
which governs the sorting is shifted one place to the left. In the end, we obtain a sorting 
in which the ordering of the bits is completely reversed. The element with the index 
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Figure 3.9: Signal flow diagram of the radix-2 decimation-in-time Fourier transform algorithm for 
M = 8; for further explanations, see text. 

1 = 001 2 , for example, will be at the position 4 = 1002 , and vice versa. Consequently, 
the chain of decomposition steps can be performed with one operation by interchanging 
the elements at the normal and bit-reversed positions. 

Further steps on the right side of the signal fl.ow diagram show the stepwise com
position to vectors of double the size. The composition to the 2-dimensional vectors is 
given by (3.36). The operations are pictured with arrows and points which have the 
following meaning: points represent a figure, an element of the vector. Thesepointsare 
called the nodes of the signal fl.ow graph. The arrows transfer the figure from one point 
to another. During the transfer the figure is multiplied by the factor written close to 
the arrow. If the associated factor is missing, no multiplication takes place. A value of 
a knot is the sum of the values transferred from the previous level. 

The elementary operation of the FFT algorithm involves only two knots. The lower 
knot is multiplied with a phase factor. The sum and difference of the two values are 
then transferred to the upper and lower knot, respectively. Because of the cross over of 
the signal paths, this operation is denoted as a butterfiy operation. 

We gain further insight into the FFT algorithm if we trace back the calculation of 
a single element. Figure 3.10 shows the signal paths for 9o and 94. For each level we 
go back the number of knots which contribute to the calculation doubles. In the last 
stage all the elements are involved. The signal path for 9o and [}4 are identical but for 
the last stage, thus nicely demonstrating the efficiency of the FFT algorithm. 

All phase factors in the signal path for 9o are one. As expected from (3.5), 9o 
contains the sum of all the elements of the vector 

9o = [(9o + 94) + (92 + 96)] + [(91 + 9s) + (93 + 97 )], 

while in the last stage the addition is replaced by a subtraction for 94 

94 = [(go + 94) + (92 + 96)]- [(gt + 9s) + (93 + 97 )]. 

After this detailed discussion of the algorithm, we can now estimate the number of 
necessary operations. At each stage of the composition, M /2 complex multiplications 



3.4 Fast Algorithms for Unitary Transforms 71 

Figure 3.10: Signal flow path for the calculation of 9o and 94 with the decimation-in-space FFT 
algorithm for an M-dimensional vector. 

and M complex additions are carried out. In total we need M /2ldM complex multipli
cations and M ldM complex additions. A deeper analysis shows that we can save even 
more multiplications. In the first two composition steps only trivial multiplications by 1 
or i occur ( compare figure 3.10). For further steps the number of trivial multiplications 
decreases by a factor of two. If our algorithm could avoid all the trivial multiplications, 
the number of multiplications would be reduced to (M/2)(ldM- 3). 

The FFT algorithm is a dassie example of a fast algorithm. The computational 
savings are enormous. For a 512-element vector, only 1536 instead of 262144 complex 
multiplications are needed compared to the direct calculation according to (3.5); thus 
figures for an 8192-element vector need 73 728 instead of 67108 864 complex multipli
cations. The number of multiplications has been reduced by a factor 170 and 910, 
respectively. 

U sing the FFT algorithm, the discrete Fourier transform can no Ionger be regarded 
as a computationally expensive operation, since only a few operations are necessary per 
element of the vector. For a vector with 512 elements, only 3 complex multiplications 
and 8 complex additions, corresponding to 12 real multiplications and 24 real additions, 
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need to be computed. 
In section 3.3, we learnt that the DFT is an example of a unitary transform which 

is generally performed by multiplying a unitary matrix with the vector. What does the 
FFT algorithm mean in this context? The signal fiow graph in figure 3.9 shows that the 
vector is transformed in several steps. Consequently, the unitary transformation matrix 
is broken up into several partial transformation matrices which are applied one after 
the other. If we take the algorithm forM = 8 as shown in figure 3.9, the unitary matrix 
is split up into three simpler transformations with spare unitary transformations: 

§o 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 

g1 0 1 0 0 0 w-1 0 0 0 1 0 0 0 0 0 

§2 0 0 1 0 0 0 w-2 0 1 0 -1 0 0 0 0 0 

§3 = 
0 0 0 1 0 0 0 w-3 0 1 0 -1 0 0 0 0 

g4 1 0 0 0 -1 0 0 0 0 0 0 0 1 0 1 0 

§5 0 1 0 0 0 -w-1 0 0 0 0 0 0 0 1 0 

g6 0 0 1 0 0 0 -w-2 0 0 0 0 0 1 0 -1 0 

g7 0 0 0 1 0 0 0 -w-3 0 0 0 0 0 1 0 -1 

1 0 0 0 1 0 0 0 go 
1 0 0 0 -1 0 0 0 g1 
0 0 1 0 0 0 1 0 g2 
0 0 1 0 0 0 -1 0 g3 
0 1 0 0 0 1 0 0 g4 
0 1 0 0 0 -1 0 0 g5 
0 0 0 1 0 0 0 1 g6 
0 0 0 1 0 0 0 -1 g7 

The reader can verify that these transformation matrices refiect all the properties of 
a single level of the FFT algorithm. The matrix decomposition emphasizes that the 
FFT algorithm can also be considered as a clever method to decompose the unitary 
transformation matrix into spare partial unitary transforms. 

3.4.3 Other 1-D FFT Algorithms 

Having worked out one fast algorithm, we still do not know whether the algorithm is 
optimal or if even more efficient algorithms can be found. Actually, we have applied 
only one special case of the divide-and-conquer strategy. Instead of parting the vector 
in two pieces, we could have chosen any other partition, say PQ-dimensional vectors, 
if M = PQ. This type of algorithms is called a Cooley-Tukey algorithm [Blahut, 1985]. 

Radix-4 Decimation-in- Time FFT 
Another partition often used is the radix-4 FFT algorithm. We can decompose a vector 
into four components 

M/4-1 M/4-1 
Yu = L 94n W_M4nu + W_Mu L 94n+1 W_M4nu 

n=O n=O 
M/4-1 M/4-1 

+ W -2u "' w-4nu + w-3u "' w-4nu M L..J g4n+2 M M L..J g4n+3 M · 
n=O n=O 
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For simpler equations, we will use similar abbreviations as for the radix-2 algorithm 
and denote the partial transformations by 0g, · · · ,3 g. Making use of the symmetry of 
W_M, the transformations into quarters of each of the vectors are given by 

Yu 
Yu+M/4 
Yu+M/2 
Yu+3M/4 

or, in matrix notation, 

= oflu + W,\f" 1!Ju + W.M2u 29u + W.M3u 39u 
oflu- iW.Mu 1!Ju- W.M2u 2flu + iW_M3u 3Yu 

= 0Yu- W.Mu 1Yu + W.M2u 2Yu- W_M3u 39u 
= 0Yu + iW_Mu 1Yu- W_M2u 2Yu- iW_M3u 3Yu 

[ 
Yu l [ 1 Yu+M/4 _ 1 

Yu+M/2 - 1 
Yu+3M/4 1 

12 complex additions and 3 complex multiplications are needed to compose 4-tupel ele
ments of the vector. We can reduce the number of additionsfurther when we decompose 
the matrix into two simpler matrices: 

[ 
Yu l [ 1 0 1 0 l [ 1 0 1 Yu+M/4 _ 0 1 0 -i 1 0 -1 

Yu+M/2 - 1 0 -1 0 0 1 0 
Yu+3M/4 0 1 0 i 0 1 0 

(3.37) 

The first matrix multiplication yields intermediate results which can be used for several 
operations in the second stage. In this way, we save four additions. We can apply this 
decomposition recursively log4 M times. As for the radix-2 algorithm, only trivial mul
tiplications in the first composition step are needed. At all other stages, multiplications 
occurfor 3/4 ofthe points (3.37). In total, 3/4M(log4 M -1) = 3/8M(ldM -2) complex 
multiplications and 2M log4 M = MldM complex additions are necessary for the radix-
4 algorithm. While the number of additions remains equal, 25 % less multiplications 
are required than for the radix-2 algorithm. 

Radix-2 decimation-in-frequency FFT 
The decimation-in-frequency FFT is another example of a Cooley-Tukey algorithm. 
This time, we break the M-dimensional input vector into first M/2 and second M/2 
components. This partition breaks the output vector into its even and odd components: 

M/2-1 
92u 2:: (gm + 9m+M/2)WMf2u 

m=O 
M/2-1 (3.38) 

2:: WM-m(gm- 9m+M/2)WM-n'"· 
m=O 

A recursive application of this partition results in a bit reversal of the elements in the 
output vector, but not the input vector. As an example, the signal flow graph for 
M = 8 is shown in figure 3.11. A comparison with the decimation-in-time flow graph 
(figure 3.9) shows that all steps are performed in inverse order. Even the elementary 
butterfly operations of the decimation-in-frequency algorithm are the inverse of the 
butterfly operation in the decimation-in-time algorithm. 
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Figure 3.11: Signal flow diagram of the radix-2 decimation-in-frequency Fourier transform algorithm 
forM= 8. 

Measures for Fast Algorithms 
According to the number of arithmetic operations required, there are many other fast 
Fourier transform algorithms which are more effective. Most of them are based on 
polynomial algebra and the number theory. An in-depth discussion of these algorithms 
is given by Blahut [1985]. 

However, the mere number of arithmetic operations is not the only measure for an 
efficient algorithm. We must also consider a number of other factors. 
• Access to the data requires additional operations. Consider the simple example of 

the addition of two vectors. There, besides the addition, the following operations are 
performed: the addresses of the appropriate elements must be calculated; the two 
elements are read into registers, and the result of these additions is written back to the 
memory. Depending on the architecture of the hardware used, these five operations 
constitute a significant overhead which may take much more time than the addition 
itself. Consequently, an algorithm with a complicated scheme to access the elements 
of a vector might add a considerable overhead to the arithmetic operations. In effect, 
a simpler algorithm with more arithmetic operations but less algorithmic overhead, 
may be faster. 

• Another factor to rate algorithms is the amount of storage space needed. This not 
only includes the space for the code but also storage space required for intermediate 
results or tables for constants. For example, an in-place FFT algorithm, which can 
perform the Fourier transform on an image without using an intermediate storage area 
for the image, is very advantageous. Often there is a trade off between storage space 
and speed. Many integer FFT algorithms, for example, precalculate the complex 
phase factors Wm and store it in statically allocated tables. 

• To a large extend the efficiency of algorithms depends on the computer architecture 
where it is to be implemented. If the multiplication is performed either in software 
or by a microcoded instruction, it is much slower than addition or memory access. In 
this case, the aim of fast algorithms is to reduce the number of multiplications even 
at the cost of more additions or a more complex memory access. Such a strategy 
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makes no sense on some modern high-speed RISC architectures, as with the Intel i860 
microprocessor, where pipelined floating point addition and multiplication take just 
one clock cycle. The faster the operations on the processor, the more the memory 
access becomes the bottleneck. Fast algorithms must now consider effective memory 
access schemes ensuring a high data cache hit rate. Margulis [1990) discusses the 
implementation of the FFT on the Intel i860 RISC processor. An optimized radix-2 
decimation-in-frequency butterfly code, consisting of 4 real multiplications, 3 addi
tions, 3 subtractions, 3 8-byte fetches, and 2 8-byte stores, takes just 6 processor 
cycles by making use of the fact that the i860 can perform several instructions in 
parallel. 

3.4.4 Multidimensional FFT Algorithms 

Generally, there are two possibilities to develop fast algorithms for multidimensional 
discrete Fourier transforms. Firstly, we can decompose the multidimensional DFT into 
1-D DFTs and use fast algorithms for them. Secondly, we can generalize the approaches 
of the 1-D FFT for multidimensional spaces. In this section, we show examples for both 
possibilities. 

Decomposition into 1-D Tmnsforms 
A two-dimensional DFT can be broken up in one-dimensional DFTs because of the 
separability of the kernel. In the 2-D case (3.13), we yield 

Gu,v = ~N f~ [~Gm,nexp (- 2~~nv)] exp (- 2~~u). (3.39) 

The inner summation forms M 1-D DFTs of the rows, the outer N 1-D DFTs of the 
columns, i. e., the 2-D FFT is computed as M row transformations followed by N 
column transformations 

row transformations 
_ lN-1 ( 2~inv) 

Gm,v = NE Gm,n exp --y;r-
n=O 

• 1 M-1 - ( 2~imu) column transformations Gu,v = M L Gm,v exp -~ . 
m=O 

In an analogous way, a k-dimensional DFT can be composed of k I-dimensional DFTs. 

Multidimensional Decomposition 
A decomposition is also directly possible in multidimensional spaces. We will demon
strate such algorithms with the simple case of a 2-D radix-2 decimation-in-time algo
rithm. 

We decompose an M X N matrix into four submatrices by taking only every second 
pixel in every second line (figure 3.12). This decomposition yields 

Gu,v+N/2 _ 1 -1 1 -1 W,Vv 0•1Gu,v 
[ 

• Gu,v l [ 1 1 1 1 l [ 0
'
0

Gu,':! l 
Gu+M/2,v - 1 1 -1 -1 WAt 1•0 Gu,v . 

Gu+M/2,v+N/2 1 -1 -1 1 WAtW,Vv 1•1Gu,v 
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Figure 3.12: Composition of an image matrix into four partitions for the 2-D radix-2 FFT algorithm. 

The superscripts in front of G denote the corresponding partial transformation. The 
2-D radix-2 algorithm is very similar to the 1-D radix-4 algorithm (3.37). In a similar 
manner as for the 1-D radix-4 algorithm, we can reduce the number of additions from 
12 to 8 by factorizing the matrix: 

-~ ~ ~ ] [ ~~::::~··· ]· M u,v 

0 1 -1 WM"W,Vv l,lGu,v 

[ a",v l r 1 o 1 Gu,v+N/2 _ 0 1 0 
Gu+M/2,v - 1 0 -1 

Gu+M/2,v+N/2 0 1 0 
(3.40) 

The 2-D radix-2 algorithm of an Mx M requires (3/4M2 )ldM complex multiplications, 
25% less than the Separation into two 1-D radix-2 FFTs. 



4 Pixels 

4.1 Introduction 

Discrete images are composed of individual image points, which we denoted in sec
tion 2.3.1 as pixels. Pixels are the elementary units in digital image processing. The 
simplest processing is to handle these pixels as individual objects or measuring points. 
This approach enables us to regard image formation as a measuring process which is 
corrupted by noise and systematic errors. Thus we learn to handle image data as sta
tistical quantities. As long as we are confined to individual pixels, we can apply the 
classical concepts of statistics which are used to handle point measurements, e. g., the 
measurement of meteorological parameters at a weather station such as air temperature, 
wind speed and direction, relative humidity, and air pressure. 

Statistical quantities are found in image processing in many respects: 
• The imaging sensor introduces electronic noise into the light intensities measured. 
• In low-light level application, we are no Ionger measuring a continuous stream of 

light, but rather single photons. 
• The process or object observed may exhibit a statistical nature. An evident example 

are images of turbulent flows (see section 1.4 and plate 4). 

4.2 Random Variables 

4.2.1 Basics 

We consider an experimental setup in which we are measuring a certain process. In 
this process we also include the noise introduced by the sensor. The measured quantity 
is the light intensity or gray value of a pixel. Because of the statistical nature of the 
process, each measurement will give a different value. This means that the observed 
process is not characterized by a single gray value but rather a probability density 
function p(g) indicating how often we observe the gray value g. A measurable quantity 
which is governed by a random process - such as the gray value g of a pixel in image 
processing - is denoted as a random variable. 
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In the following, we discuss both continuous and discrete random variables and 
probability functions. We need discrete probabilities as only discrete gray values can 
be handled by a digital computer. Discrete gray values are obtained after a process 
called quantization, which is discussed in section 4.2.2. All formulas in this section 
contain continuous formulation on the left side and their discrete Counterparts on the 
right side. In the continuous case, a gray value g is measured with the probability 
p(g). In the discrete case, we can only measure a finite number, Q, of gray values gq 
(q = 0,1, ... ,Q -1) with the probability Pq· Normally, the gray value of a pixel is 
stored in one byte so that we can measure Q = 256 different gray values. Since the 
total probability to observe any gray value is 1, the probability meets the requirement 

00 

J dg p(g) = 1, 
Q-1 

L:Pq = 1. 
q=O 

(4.1) 
-oo 

The expected or mean gray value Jl is defined as 

00 

Jl = (g) = J dg p(g)g, 
-oo 

Q-1 

Jl = L:Pq9q· 
q=O 

(4.2) 

The computation of the expectation value is denoted - as in quantum mechanics - by 
a pair of angle brackets ( · · ·). The variance is a measure to which extent the measured 
values deviate from the mean value 

00 

0'2 = ((g- (g)?) = J dg p(g)(g- (g))2, 
-oo 

Q-1 

u2 = L:Pq(gq _ (g) )2. 
q=O 

(4.3) 

The probability function can be characterized in more detail by similar quantities 
as the variance, the moments: 

00 

mn = ( (g - (g) t) = j dg p(g )(g - (g) t, 
-oo 

Q-1 

mn = L:Pq(gq - (g) t · 
q=O 

(4.4) 

The first moment is - by definition - zero. The second moment corresponds to the 
variance. The third moment, the skewness, is a measure for the asymmetry of the 
probability function around the mean value. If a distribution function is symmetrical 
with respect to the mean value, the third and all higher-order odd moments vanish. 

The probability function depends on the nature of the underlying process. Many 
processes with continuous random variables can be adequately described by the normal 
or Gaussian probability distribution 

(4.5) 

The normal distribution is completely described by the two elementary statistical pa
rameters, mean and variance. Many physical random processes are governed by the 
normal distribution, because they are a linear superimposition of many ( n) individual 
processes. The central Iimit theorem of statistics states that in the limit n --+ oo the 



4.2 Random Variables 79 

p p 

Figure 4.1: Illustration of the superimposition of the probability functions with the slope distribution 
on the undulated ocean surface: a) slope distribution of a single sinusoidal wave; b) slope distribution 
of the superposition of two statistically independent sinusoidal waves; c) Gaussian distribution as 
the theoretical Iimit for the linear superimposition of many sinusoidal waves; d) slope distribution as 
measured in a wind-wave facility [Jähne, unpublished data]. 

distribution tends to a normal distribution, provided certain conditions are met by the 
individual processes [Reif, 1985]. 

As an example, we consider the distribution of the slope of the ocean surface. The 
ocean surface is undulated by surface waves which incline the water surface. As ele
mentary processes, we can regard sinusoidal waves as propagating on the ocean surface. 
Such a single wave shows a slope distribution very different from that of a normal distri
bution (figure 4.la). The maximum probability occurs with the maximum slopes of the 
wave. Let us assume that waves with different wavelengths and direction superimpose 
on each other without any disturbance and that the slope of the individual wave trains 
is small. The slopes can then be added up. The resulting probability distribution is 
given by convolution of the individual distributions, since, at each probable slope of the 
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first wave, the second can have all slopes according to its own probability distribution. 
The superimposition of two waves results in a distribution with the maximum at slope 
zero (figure 4.1b). Even for quite a small number of superimpositions, we can expect a 
normal distribution (figure 4.1c). 

A measured slope distribution looks very similar to a normal distribution, but also 
shows some significant deviations (figure 4.1d). The distribution is slightly asymmet
ric. The maximum is shifted to small negative slopes, high positive slope values are 
much more likely than high negative slopes and than those expected from a normal 
distribu tion. 

The deviations from a normal distribution occur because water surface waves violate 
one of the requirements for anormal distribution. They do not superimpose without 
interactions because of their non-linear nature. In consequence, deviations from the 
normal distribution provide some clues about the strength and the kind of nonlinear 
interactions. 

For discrete values, the Gaussian distribution is replaced by the binomial distribution 
[Reif, 1985] 

- Q! q(1 )Q-q . h 0 1 (4 6) pq - 1 (Q _ )lp - p , wlt < p < . . q. q . 

Again Q denotes the number of quantization levels. The parameter p determines the 
mean and the variance 

fL = Qp 

a 2 = Qp(1- p). 

( 4.7) 

( 4.8) 

For large Q, the binomial distribution quickly converges to the Gaussian distribution. 
For Q = 8, the differences are already quite small, as is shown by the following table 
(p = 1/2, a 2 = 2, fL = 4): 

q 0 
Binomial distribution 1 
Gaussian distribution 1.3 

1 2 3 
8 28 56 

7.6 26.6 56.2 

4 5 6 
70 56 28 

72.2 56.2 26.6 

7 
8 

7.6 

8 
1 

1.3 

An application of this simple statistics is shown in the handling of noisy images. 
There are a number of imaging sensors available which show a considerable noise level. 
The most prominent example is thermal imaging. Such a sensor collects thermal radi
ation in the farinfrared with wavelengths between 3 and 14 p,m and thus can measure 
the temperature of objects. Figure 4.2a shows the temperature of the water surface. 
We can hardly detect the small temperature fluctuations which indicate the turbulent 
mixing close to the water surface. We can however take the mean of several images, 
just as we would take several measurements to obtain a better estimate of the mean. 
An estimate of the error of the mean taken from N samples is given by 

(4.9) 

If we take the average of N images, the noise level is already reduced by a factor ffi 
compared to a single image. Figure 4.2b shows how much better the pattern can be 
observed in the average image. 
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Figure 4.2: Noise reduction by image averaging: a) singlethermal image of small temperature fluctu
ations on a water surface; b) same, averaged over 16 images; temperature range corresponding to full 
gray value range: 1.25 K. 

4.2.2 Quantization 

As another application of statistical handling of data we consider quantization. After 
digitization (section 2.3), the pixels still show continuous gray values. For use with a 
computer we must map them onto a limited nurober Q of discrete gray values: 

Q [0, oo[--t {go, 91, ... , 9Q-d = G. 

This process is called quantization. The nurober of quantization levels in image pro
cessing should meet two criteria. 

First, no gray value steps should be recognized by our visual system. Figure 4.3 
shows images quantized with 2 to 16 levels of gray values. It can be clearly seen that a 
low nurober of gray values leads to false edges and makes it very difficult to recognize 
objects which show no uniform gray values. In printed images, 16 levels of gray values 
seem tobe sufficient, but on a monitor we would still be able to see the gray value steps. 
Generally, image data are quantized into 256 gray values. Then each pixel occupies 8 
bit or one byte. This bit size is well adapted to the architecture of standard computers 
which can address memory bytewise. Furthermore, the resolution is good enough that 
we have the illusion of a continuous change in the gray values, since the relative intensity 
resolution of our visual system is only about 2% (see section 1.3). 

The other criterion is related to the imaging task. For a simple application in 
machine vision, where the objects show a uniform brightness which is different from the 
background, or for particle tracking in flow visualization ( section 1.4 and plate 4), two 
quantization levels, i. e., a binary image, might be sufficient. Other applications might 
require the resolution of faint changes in the intensity. Then an 8-bit resolution would 
be too coarse. 

Quantization always introduces errors, since the true value g is replaced by one of 
the quantization levels 9q· If the quantization levels are equally spaced with a distance 
D..g and all gray values are equally probable, the variance introduced by the quantization 
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Figure 4.3: Quantization of an image with different quantization Ievels: a) 16; b) 8; c) 4; d) 2. 

is given by 
9q+ll.gf2 

(T~ = 19 J (g- 9q)2dg = 112(ßg)2. 
gq-ll.g/2 

(4.10) 

This equation shows how we select a quantization level. We take the level gq for which 
the distance from the gray value g, lg-gql, is smaller than the neighboring quantization 
levels qk-l and qk+l· The standard deviation a; is about 0.3 times the distance of the 
quantization levels ßg. 

Quantization with unevenly spaced quantization levels is discussed in detail by 
Rosenfeld and Kak [1982] . Unevenly spaced quantization levels are hard to realize 
in any image processing system. An easier way to yield unevenly spaced levels is to 
use equally spaced quantization but to transform the intensity signal before quantiza
tion with a non-linear amplifier, e. g., a logarithmic amplifier. In case of a logarithmic 
amplifier we would obtain levels whose widths increase proportionally with the gray 
value. 
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Algorithm 1: C subroutine to calculate the histogram of an image stored row by row in video memory. 
The offset between the lines allows that the histogram of only a subimage (area-of-interest) can be 
calculated. This program has been written to run on the TMS 34010 graphics processor of the VISTA 
frame buffer (see appendix B). 

I• 
** Compute histogram in vector 11 for the byte image il in memory 
** Explanation of variables: 
** vl: pointer to LVEC structure 
** il: pointer to BMAT structure 
** pv: pointer to begin of histogram vector 
** pi: pointer to image data 
** dx: number of columns 
** dy: number of rows 
** loffs: offset between end of previous and beginning of next line 
•I 
void vmllblhist(vl,il) LVEC •vl; BMAT •il; { 

long •pv=vl->dat; 

} 

unsigned char *pi=(unsigned char•)il->dat; 
long dy=il->dy, dx=il->dx, i; 
long loffs=il->offs-(long)il->dx; 

I• clear histogram •I 
vllclr(vl); 

I• compute histogram •I 
while (dy--) { 

} 

for (i=dx; i > 0; i--) pv[•pi++]++; 
pi += loffs; 

4.2.3 Histograms 

Generally, the probability distribution is not known a priori. Rather it is estimated from 
measurements. If the observed process is homogeneous, that is, it does not depend on 
the position of the pixel in the image, there is a simple way to estimate the probability 
distribution with the so-called histogram. 

A histogram of an image is a vector which contains one element for each quantization 
level. Each element contains the number of pixels whose gray value corresponds to the 
index of the element. Histograms can be calculated straightforwardly ( algorithm 1). 
First we set the whole histogram vector to zero. Then we scan all pixels of the image, 
take the gray value as the index to the vector, and increment the corresponding element 
of the vector by one. The actual scanning algorithm depends on how the image is 
stored. Algorithm 1 assumes that the image is stored row by row in the memory, where 
an arbitrary offset between the lines is allowed. 

Histograrns allow a first exarnination of the images acquired. A surprising prop
erty of the acquisition hardware is revealed in figure 4.4a. We rnight have expected a 
smooth histogram from an image which just contains gradual changes in the gray values. 
However, the histogram shows large variations from gray value to gray value. These 
variations cannot be caused by statistical variations: a 512 x 512 image has 1/4 million 



84 4 Pixels 

~----------H-is-to-g-ra-m---1--------

" 2 

0 

~----------H-is-to-g-ra-m---~--------~ 

" 20 

10 

0 

Figure 4.4: Images and their gray value histograms I; a) quality control of the analog-digital-converter 
(ADC); b) contrast enhanced difference of two consecutive images to show the camera noise. 

pixels, so that on average 1000 pixels show the same gray values. Consequently, the 
statistical fluctuations even in a total random image should only be -JiQOö or about 
3 %. The reason lies rather in the varying widths of the quantization levels. Imagine 
that the decision levels of the video analog-digital converter are accurate to 1/8 least 
significant bit. Then the widths of a quantization level might vary from 3/4 to 5/4least 
significant bit. Consequently, the probability distribution may vary by ±25 %. 

Figure 4.4b gives an impression of the noise of CCD cameras. It shows the difference 
between two consecutive images taken from the same static scene. The histogram gives 
a clear indication whether an image is too darkor too bright (figure 4.5). As we know 
from our discussion on the human visual system in section 1.4, it is very difficult to 
estimate absolute intensities just by eye. Therefore, it is strongly recommended to 
use objective tools such as histograms to rate image intensities. Especially dangerous 
are under- or overflows in the gray values, since they are deceiving areas of constant 
brightness, where there may actually be considerable gray value variation. Over- or 
underflow can be recognized in the histogram by a strong peak at gray values 255 and 0, 
respectively. Under optimal coriditions, the histogram should fill the whole gray value 
range, but go to zero at the edges. We should adjust our imaging system in such a way 
that this condition is met. 
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Figure 4.5: Images and their gray value histograms li; a) too dark image; b) too bright image with 
overfiow in gray values; c) correctly illuminated image. 



86 4 Pixels 

4.3 Point Operations 

4.3.1 Homogeneaus Point Operations 

Point operations are a dass of very simple image processing operations. The gray values 
at individual pixels are modified depending on the gray value and the position of the 
pixel. Generally, such a kind of operation is expressed by 

(4.11) 

The indices at the function P denote the explicit dependence on the position of the 
pixel. If the point operation is independent of the position of the pixel, we speak of it 
as being an homogeneous point operation and can write 

a:"n = P(Gmn)· (4.12) 

Point operations are used to perform such simple image processing tasks as 
• Compensation of non-linear camera characteristics. Generally, the gray value is not 

directly proportional to the brightness in the image. 
• Gorreetion and optimization of the brightness and contrast. 
• Highlighting of image parts with a certain range of gray values; detection of small 

intensity differences. 
• Balancing of illumination differences caused by the uneven sensitivity of the image 

sensors or intensity drop towards the edge of the images. 
It is important to note that the result of the point operation does not depend at 

all on the gray value of neighboring pixels. A point operation maps the set of gray 
values onto itself. Generally, point operations are not invertible, since two different 
gray values may be mapped onto one. Thus a point operation generally results in a loss 
of information which cannot be recovered. The point operation 

- { 0 9q < t 
P(gq) - 255 9q ~ t ' ( 4.13) 

for example, performs a simple threshold evaluation. All gray values below the threshold 
are set to zero (black), all above and equal to the threshold to 255 (white). 

Only a point Operation with a one-one mapping of the gray values is invertible. 

4.3.2 Look-Up Tables 

The direct computation of homogeneaus point operations, according to (4.12), is very 
costly. Imagine that weintend to present a 512 x 512 image in a logarithmic gray value 
scale with the point operation P(gq) = 25.5log 9q· We would have to calculate the 
logarithm 262144 times. The key point for a more efficient implementation lies in the 
observation that the definition range of any point operation consists of only very few 
gray values, typically 256. Thus we would have to calculate the very same values many 
times. We can avoid this if we precalculate P(gq) for all 256 possible gray values and 
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store the computed values in a 256-element table. Then the computation of the point 
operation is reduced to a replacement of the gray value by the element in the table with 
an index corresponding to the gray value. 

Such a table is called a look-up table or LUT. As a result, homogeneous point 
operations are equivalent to look-up table operations. 

In most image processing systems, look-up tables are implemented in hardware. 
Generally, one look-up table, the input LUT, is located between the analog-digital 
converter and the frame buffer. Another, the output L UT, is located between the frame 
buffer and the digital-analog converter for output of the image in the form of an analog 
video signal, e. g., to a monitor. (Technical details are described in appendix B.) The 
input LUT allows a point operation to be performed before the image is stored in the 
frame buffer. With the output LUT, a point operation can be performed and observed 
on the monitor. In this way, we can interactively perform point operations without 

modifying the stored image. 
As a first example of LUT operations, we will consider contrast stretching and 

brightness optimization. Because of poor lighting conditions and the offset level of the 
video amplifier being too low, an image will be too dark and of low contrast (figure 
4.6a). The histogram shows that the image contains only a low range of gray values at 
low gray values. We can improve the appearance of the image considerably if we apply 
a point operation which shows a steep line from 0-255 only over a small gray value 
range and is 0 below and 255 above the selected range. This operation stretches the 
small range of gray values over the full range from 0 to 255 (figure 4.6a). It is important 
to recognize that we only improve the appearance of the image with this operation but 
not the image quality itself. The gray value resolution is still the same. 

The right way to improve the image quality is to optimize the lighting conditions. 
If this is not possible, we can increase the gain of the analog video amplifier. Many 
modern image processing boards include an amplifier whose gain and offset can be set 
by software (see appendix B). Increasing the gain we can improve the brightness and 
resolution of the image but only at the expense of an increased noise level. 

The point operation which yields the digital negative of an image, 

(4.14) 

is one of the few examples of a reversible point operation (figure 4.6b). 
A logarithmic transformation of the gray values allows a !arger dynamic range to 

be recognized at the cost of resolution in the bright parts of the image. The dark parts 
become brighter and show more details (figure 4.7a). The image is better adapted to 
the logarithmic characteristics of the human visual system which can detect relative 
intensity differences over a wide range of intensities {section 1.4). The last example 
in figure 4. 7b shows a clipping operation of .the bright parts of the image. High gray 
values above a threshold are set to 255. This operation maps the gray values of the 
background to a constant value and thus is useful to suppress background noise while 
leaving the darker gray values in the objects unchanged. 

A cautionary note is necessary for all kinds of LUT operations. As we have already 

discussed in contrast stretching, any LUT operation makes the images look better, but 
does not actually improve them. This is why we should use them thoughtfully. A careful 
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Figure 4.6: Examples for LUT operations 1: a) contrast stretching of a low-contrast image; b) digital 
negative. 
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Figure 4.7: Examples for LUT operations II: a) range compression; b) background clipping. 
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preparation of images using an LUT operation is very important for printouts which 
have a lower contrast range than images on monitors. It may also be appropriate to 
use more advanced methods such as histogram equalization [Jain, 1989]. However, for 
further processing of images, especially if we are interested in a quantitative analysis of 
gray values, they are not of much help. On the contrary, they may introduce additional 
errors, because of the rounding errors introduced by non-linear LUT functions. They 
may Iead to missing gray values in the output or mapping of two consecutive gray 
values onto one. Theseproblemsare apparent in the histogram of the processed image 
in figure 4.7a. 

In conclusion, the use of input L UTs is limited. Input L UTs would be a valuable 
processing element if the digitization precision were higher than the storage precision. 
Imagine that we digitize with 12 bit, pass the data through a 12-bit input LUT, and 
store them with 8 bit. Then we would not see rounding errors. In addition, we could 
compress a larger dynamic range with a logarithmic LUT onto 8 bit. 

In contrast to the input LUT, the output LUT is a much more widely used tool, 
since it does not change the stored image. With LUT operations we can also convert a 
gray-value image into a pseudo-color image. Again, this technique is common even with 
the simplest image processing boards, since not much additional hardware is needed. 
Three digital analog converters are used for the primary colors red, green, and blue. 
Each channel has its own L UT. In this way, we can map each individual gray value gq 
to any color by assigning a color triple to the corresponding LUT addresses r(gq), g(gq), 
and b(gq)· Formally, we now have a vector point operation 

P(gq) = [ ~~!:~ ]· 
b(gq) 

( 4.15) 

As long as all three point functions r(gq), g(gq), and b(gq) are identical, a gray value 
image will be displayed. If two of them vanish, the image will appear in the remaining 
color. RGB output LUTs find a wide variety of applications: 
• Small gray value differences can be recognized much better if they are transformed 

into color differences. We can mark gray value ranges of interest with a certain 
color. In this way we can also overcome the incapability of the human visual system 
to recognize absolute gray values. Some examples of pseudo-coloring of gray value 
images are shown in plate 7. 

• Recognized objects- as the result of a segmentation (chapter 10)- can be marked 
by coloring without changing the gray values if we reserve another bit plane of the 
frame huffer to store the binary image generated by segmentation. This bit can then 
be used to switch to another set of RGB output LUTs which, for example, show the 
gray values of the image in yellow instead of white, if it belongs to the object. Since 
the original gray values can still be seen, we can study the quality of the segmentation 
in detail. 

• In the same manner, we can visualize the result of a classification (chapter 12). Now 
we can use a different color for objects belanging to different classes. 

• Histograms, L UTs, markers and grids can be superimposed in color over the gray 
value image and can thus be recognized much better as if we had overlaid them in 
black-and-white. 



4.3 Point Operations 91 

• A more complex application is the representation of stereo images (see section 2.2.9 
and plate 6a). We either need two frame buffers, or must split the bitplanes of a frame 
buffer in two parts to store the left and right stereo image with half the resolution, 
e. g., 4 bit = 16 gray values, instead of 8 bit = 256 gray values. With two frame 
buffers, we just need to associate the red and green color channel to the first and 
second frame buffer, respectively. If we store the red and green component images in 
the 4lower and higher bit planes, the RGB LUTs would contain the following values: 

r(gp) (gq mod 16)16 
g(gp) = (gq/16)16 (4.16) 
b(gp) = 0. 

The L UT for the red channel sets the output gray value according to the four lowest 
bits, while the green channel ignores these bits and only takes the 4 most significant 
bits. 

• In a similar manner, we can represent multi-channel images. An interesting example 
is shown in plate 4a. This color image is composed of eight binary images. Each bit 
plane is shown in a different color to identify the individual images. 

• Finally, we can code vectorial image features in color, as we will discuss in sec
tion 7.1.2. 

A final remark concerns the representation of gray values. Normally we think of 
them as unsigned numbers ranging from 0 to 255 in 8 bit values. As soon as we 
perform operations with images, e. g., if we subtract two images, negative gray values 
may appear which cannot be represented. Thus we are confronted with the problern 
of two different representations of gray values, as unsigned and signed 8 bit numbers. 
Correspondingly, we must have two versions of algorithms, one for unsigned and one 
for signed gray values. 

A simple solution to this problern is to handle gray values principally as signed 
numbers. This can be simply done by subtracting 128. Then the mean gray value 
intensity of 128 would become the gray value zero. Gray values lower than this mean 
value are negative. Subtraction by 128 can be easily implemented with the input LUT 

p(gq) = (gq- 128) mod 256, 0 :::; gq < 256. ( 4.17) 

This point operation converts unsigned gray values to signed gray values which are 
stored and manipulated in the frame buffer. For display, we must convert the gray 
values again to unsigned values by the inverse point operation 

p(gq) = (gq + 128) mod 256, 0 :::; gq < 256, (4.18) 

which is the same point operation since all calculations are performed modulo 256. 

4.3.3 Inhomogeneous Point Operations 

Computation of an inhomogeneous point operation is much more time consuming. We 
cannot use look-up tables since the point operation depends on the pixel position and 
we are forced to calculate the function for each pixel. Despite the effort involved, inho
mogeneaus point operations are used quite often. Here we will discuss two important 
applications. 
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Figure 4.8: Effect of windowing on the discrete Fourier transform: a) DFT of b) without using a 
window function; b) image multiplied with a cosine window; c) DFT of b) using a cosine window. 

Window Operations 
Before we can calculate the DFT of an image, the image must be multiplied with a 
window function. If we omit this step, the spectrum will be distorted by the convolution 
of the image spectrum with the Fourier transform of the box function, the sinc function 
(see appendix A.3), which causes spectral peaks to become star-like patterns along the 
coordinate axes in Fourierspace (figure 4.8a). We can also explain these distortions with 
the periodic repeat of finite area images (see section 2.3.3). The periodic repeat leads 
to discontinuities in horizontal and vertical directions which cause corresponding high 
spectral densities along the axes in the k space. In order to avoid these disturbances, 
we must multiply the image with a window function which approaches zero towards the 
edges of the image. An optimum window function should a) preserve a high spectral 
resolution and b) show minimum distortions in the spectrum, that is, its DFT should 
fall off as fast as possible. These are two Contradietory requirements. A good spectral 
resolution requires a broad window function. Such a window, however, falls off steeply 
at the edges causing a slow fall-off of the sidelopes of its spectrum. 

A carefully chosen window is very crucial for a spectral analysis of time series 
[Marple, 1987; Oppenheim and Schafer, 1989). However, in digital image processing 
it is not so critical, because of the much lower dynamic range of the gray values. A 
simple cosine window 

-M/2 ~ m < M/2, -N/2 ~ n < N/2 (4.19) 

performs this task well (figure 4.8b). The indices in (4.19) are centered around zero. 
A direct implementation of the windowing operation is very time consuming, because 

we would have to calculate the cosine function MN times. It is much more efficient to 
perform the calculation of the window function once, store it in the frame buffer, and 
use it for the calculation of many DFTs. The computational efficiency can be further 
improved by recognizing that the window function ( 4.19) is separable, i. e., a product 
of two functions Wm,n = cwm · •w,.. Then we need to calculate only the M plus N 
values for the column and row function cwm and •w,., respectively. As a result there 
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Figure 4.9: Cerreetion of uneven illumination with an inhomogeneaus point operation: a) original im
age; b) background image; c) division of the image by the background image. Computations performed 
with BioScan OPTIMAS. 

is no need to store the whole window image. It is sufficient to store only the row and 
column functions at the expense of an additional multiplication per pixel when using 
the window operation. 

Gorreetion of Uneven Illumination 
Every real-world application has to contend with uneven illumination of the observed 
scene. Even if we spend a lot of time optimizing the lighting system, it is still very 
hard to obtain a perfect even illumination. A more difficult problern are small dust 
particles in the optical path especially on the glass window close to the CCD sensor. 
These particles are not sharply imaged but absorb some light and thus cause a drop 
in the illumination level in a small area. These effects are not easily visible in a scene 
with high contrast and many details, but become very apparent in a scene with a 
uniform background (figure 4.9a and b ). CCD sensors also illustrate the problern of 
uneven sensitivity of the individual photo receptors. These distortions severely limit 
the quality of the images. Additional noise is introduced, it is more difficult to separate 
an object from the background, and additional systematic errors have tobe considered 
concerning the accuracy of gray values. 

Nevertheless, it is possible to correct these effects if we can take a background 
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image. We might either be able to take a picture without the objects, or, if they 
are distributed randomly, we can calculate a mean image from the many different 
images. This background image bmn can be used to correct the uneven illumination 
and sensitivity of our sensor. We just divide the image by the background image: 

(4.20) 

Since the gray values of the divided image again have to be represented by integers, 
multiplication with an appropriate constant is necessary. Figure 4.9c demonstrates that 
an effective suppression of an uneven illumination is possible using this simple method. 

4.4 Dyadic L UT Operations 

The window operations and corrections of uneven illumination discussed in the last 
section are two examples of operations in which two images are involved, termed dyadic 
image opemtions. In those two examples only simple operations, multiplication and 
division, were involved. In this section we discuss how dyadic image operations can be 
implemented as L UT operations and consider some further examples. Generally, any 
dyadic image operation can be expressed as 

(4.21) 

and pedormed as an L UT operation. Let the gray values of each parameter in P take 
Q different values. In total we have to calculate Q2 combinations of parameters and 
thus different values of the LUT table L. For 8-bit images, 64k values need to be 
calculated, that is still a quarter less then with a direct computation for each pixel in 
a 512 x 512 image. We can store all the results of the dyadic operation in a large LUT 
with Q2 = 64k entries in the following manner: 

(4.22) 

High and low bytes of the LUT address are given by the gray values in the images G 
and H, respectively. 

More advanced image processing systems, such as the Series 151 (see appendix B), 
contain a 16-bit LUT as a modular processing element. With such an LUT processor 
any dyadic LUT operation with two 8-bit images can be performed in video time, 
i.e., 33ms for a 512 X 512 image, once the 64k LUT has been programmed. This is 
much faster than a direct computation of a dyadic operation using the PC hardware, 
especially if the operation is complex. One such example is the calculation of phase and 
magnitude from a complex-valued image, such as the DFT of an image. We can perform 
both operations simultaneously with one LUT operation if we restriet the output to 8 
bit: 

L(28 rp + iq) = 28 Jr~ + i~ + 128 arctan (ip) , 0 :5 rp, iq < Q. 
7r rq 

(4.23) 

The magnitude is returned in the high byte and the phase, scaled to ±128, in the low 
byte. 
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4.5 Correlations and Spectra 

4.5.1 Random Fields 

The statistics developed so far, notably histograms, does not contain any information on 
the image content, i. e., the relations between the pixels. Let us illustrate this important 
fact by a simple example. Take the image shown in figure 4.5 with a bimodal histogram. 
This histogram could belong to many different images. We do not know anything about 
the size and number of the objects. The histogram could be from an image with a single 
dark and white area. Or, even more complicated, abimodal histogram does not mean 
at all that we can separate an object from the background. It could result, for example, 
from an image where the objects show a pattern with dark and light stripes and the 
background shows white dots on a black background. 

If we want to analyze the contents of images statistically, we must consider the whole 
image as a statistical quantity, known as a random field. In case of an M X N image, a 
random field consists of an M X N matrix whose elements are random variables. This 
means that a different probability distribution belongs to each individual pixel. The 
mean of a random field is then given by 

Q 

(Gm,n) = LP9 (m,n)g9 • ( 4.24) 
q=O 

We can make an estimate of the mean, just as we would do for a single value, by taking 
N measurements under the same conditions and computing the average image 

(4.25) 

The index E indicates that we compute the mean by averaging over several members 
of the ensemble of possible random fields belonging to a given experimental setup ( en
semble mean). The estimate of the variance is given by 

(4.26) 

4.5.2 Correlations and Covariances 

Now we can relate the gray values at two different positions with each other. One 
measure for the correlation of the gray values is the expectation value for the product 
of the gray values at the two positions, the autocorrelation function 

Q-lQ-1 

R99 (m, n; m', n') = (GmnGm'n') = E L:9q9rP(q, r; m, n; m', n'). 
q=O r=O 

(4.27) 

The probability function has six parameters and tells us the probability that we simul
taneously measure the gray value q at the point (m, n) and rat the point (m', n'). The 
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autocorrelation function is four-dimensional. Therefore this general statistics is hardly 
ever used. Things become easier, if the statistics does not explicitly depend on the 
position of the pixel. Such a random field is called homogeneous. The mean value is 
then constant over the whole image 

(G) = const, 

and the autocorrelation function becomes shift invariant 

R99 (m + k, n + l; m' + k, n' + l) R99 (m, n; m', n') 
= R99(m- m', n- n'; 0, 0) 

R99 (0,0;m'- m,n'- n). 

( 4.28) 

(4.29) 

The last two identities are obtained when we set (k, l) = -(m', n') and (k, l) =:: -(m, n). 
Since the autocorrelation function depends only on the distance between point, it re
duces from a four- to a two-dimensional function. Fortunately, many stochastic pro
cesses are homogeneous. A deterministic image which additively contains zero-mean 
noise, 

G' = G + R, ( G') = G, (4.30) 

is not a homogeneous field, because the mean is not constant. By subtraction of the 
mean, however, we yield a homogeneous random field. Some processes show multi
plicative noise. Multiplicative noise can be converted to additive noise by taking the 
logarithm of the gray values. The autocorrelation function for a homogeneous random 
field takes a much simpler form, since it depends only on the distance between the 
pixels: 

M-1N-1 

R9g(kl) = L LGmnGm+k,n+l· ( 4.31) 
m=On=O 

This expression includes spatial averaging. For a general homogeneous random field 
it is not certain that spatial averaging leads to the same mean as the ensemble mean. 
A random field which meets this criterion is called an ergodie random field. Another 
difficulty concerns indexing. As soon as ( m, n) =f. ( 0, 0), the indices run over the range of 
the matrix. We then have to consider the periodic extension of the matrix, as discussed 
in section 3.2.3. This is known as cyclic autocorrelation. 

As discussed above, many processes consist of a deterministic and a zero-mean 
random process. Therefore it is helpful first to subtract the mean and then to calculate 
the correlation 

M-lN-1 

Cgg(kl) = L L(Gmn- (Gmn))(Gm+k,n+l- (Gm+k,n+l)). ( 4.32) 
m=On=O 

This function is called the autocovariance. The autocovariance for zero-shift ((k, l) = 
(0,0)) is equal to the variance. 

Now weillustrate the meaning of the autocorrelation function with some examples. 
First we consider an image containing only zero-mean homogeneous noise. The :fluctu
ations at the individual pixels should be independent of each other. Autocorrelation 
(and autocovariance) then vanishes except for zero shift. For zero shift it is equal to 
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the variance of the noise. This means that the autocorrelation is unequal to zero if the 
:fluctuations at neighboring pixels are not independent. If the autocorrelation gradually 
decreases with the distance of the pixels, the pixels become more and more statistically 
independent. We can then define a characteristic length scale over which the gray values 
at the pixels are correlated to each other. In this sense the autocorrelation function is 
a description of the interrelation between the gray values of neighboring pixels. 

In a similar manner as we correlate one image with itself, we can correlate images 
from two different homogeneous stochastic processes G and H. The cross correlation 
function is defined as 

M-1N-1 

Rgh(k, l) = L L GmnHm+k,n+l 

and the cross covariance as 
M-1N-1 

m=On=O 

Cgh(kl) = L L(Gmn- (Gmn})(Hm+k,n+l- (Hm+k,n+l}). 
m=On=O 

(4.33) 

(4.34) 

The cross correlation operation is very similar to the convolution operation (see ap
pendix A.3). The only di:fference is the sign of the indices (m, n) in the second term. 

4.5.3 Spectra and Coherence 

Now we consider random fields in the Fourier space. In the previous section we learnt 
that they are characterized by the auto- and cross correlation functions. Gorrelation in 
the space domain corresponds to multiplication in the Fourier space with the complex 
conjugate functions 

(4.35) 

and 
( 4.36) 

In these equations, correlation is abbreviated with the * symbol, similar to convolution 
for which we use the * symbol. For a simpler notation, the spectra are written as 
continuous functions. The Fourier transform of the autocorrelation function is the power 
spectrum P99 • The Fourier transform of the cross-correlation function is called the cross
correlation spectrum Pgh· In contrast to the power spectrum, it is a complex quantity, 
the real and imaginary parts being termed the co- and quad-spectrum, respectively. To 
understand the meaning of the cross-correlation function, it is useful to define another 
quantity, the coherence function <I>: 

(4.37) 

Basically, the coherence function contains information on the similarity of two images. 
We illustrate this by assuming that the spectrum of image H is a shifted copy of 
the image G, h = iJ exp( -ik:c.). In this case, the coherence function is one and the 
cross-correlation spectrum P9 h reduces to 

P9h(k) = P99 (k)exp(ikz.). (4.38) 
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Since P99 is a real quantity, we can compute the shift Z 8 between the two images from 
the phase factor exp(ikz8 ). 

1f there is no fixed phase relationship of a periodic component between the two 
images, then the coherency decreases. We can easily see this if we think of several inde
pendent components with different phase shifts. If the phase shift of these components 
is randomly distributed, the cross-correlation vectors in the complex plane point into 
random directions and add up to zero. A more detailed discussion of cross-spectral 
analysis can be found in Marple [1987]. 

An illustrative example is seen in cross-spectral image analysis of water surface 
waves (see section 1.4). As two different random fields, we take images which have been 
acquired shortly after each other with a time interval of t 0 • During this time a wave 
with the wave number k travels a certain distance so that it shows a phase lag in the 
second image which is given by 

(4.39) 

where w is the circular frequency of the wave. This phase shift is measured with the 
coherence function and allows us to determine the phase speed c of the wave by the 
simple relation 

</> 
C= -k2 k. 

to 
( 4.40) 

The coherence function tells us whether all waves with the same wave number k have 
the same phase speed. The larger the fluctuations of the phase speed, the lower is 
the coherence. Figure 4.10 shows the power spectrum, the coherency function, and 
the phase speed averaged over 258 images as a function of the wave number in a log
polar wave number coordinate system (section 3.2.5). Even if we arenot familiar with 
the physics of water surface waves, the apparent differences in the phase speed and the 
coherence function observed under the two different conditions tell us that cross-spectral 
analysis is a useful tool. 
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Figure 4.10: Cross-correlation analysis of images from water surface waves at 3m/s wind speed to 
determine the phase speed and the coherence of the wave field: a) 6.2 m fetch; b) 21.3 m fetch. Unpub
lished data of the author from measurements in the wind-wave facility IMST, University of Marseille, 
France. 



5 Neighborhoods 

5.1 Combining Pixels 

The contents of an image can only be revealed when we analyze the spatial relations 
of the gray values. If the gray value does not change in a small neighborhood, we 
are within an area of constant gray values. This could mean that the neighborhood is 
included in an object. If the gray value changes, we might be at the edge of an object. 
In this way, we recognize areas of constant gray values and edges. 

Point operations do not provide this type of information. New classes of operations 
are necessary which combine the pixels of a small neighborhood in an appropriate 
manner and yield a result which forms a new image. The meaning of the gray values 
in such an image has changed. If we apply an operation to detect the edges, a bright 
gray value at a pixel may now indicate that an edge runs across the pixel. 

Point operations are a very simple dass of operations which are basically used for 
image enhancement; in other words, to make images look better. It is obvious that 
operations combining neighboring pixels to form a new image are much more diversified 
and complex. They can perform quite different image processing tasks: 
• Suppression of noise. 
• Correction of disturbances caused by errors in image acquisition or transmission. 

Such errors will result in incorrect gray values for a few individual pixels. 
• Compensation of incorrect focusing, motion blur or similar errors during image ac

quisition. Such operations are called image restoration operations since they try to 
restore the original from a degraded image. 

• Enhancement or suppression of fine details in images. 
• Detection of simple local structures as edges, corners, lines and areas of constant gray 

values. 
In this chapter we will discuss linear shift-invariant and rank value filters as two 

principal possibilities for combining pixels in a local neighborhood. Then we have to 
work out the base from which to handle a wide range of image processing tasks starting 
with simple smoothing and edge detection operations (chapter 6). These two chapters 
are central to this book as simple filter operations are the building blocks for more 
complex operations discussed in chapters 6 through 9 and 17. Optimumfilter design 
and fast algorithms for filter operations are also discussed in chapter 6. 
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Figure 5.1: Illustration of the discrete convolution operation with a 3 X 3 filter mask. 

5.1.1 Linear Filtering 

First we focus on the question as to how we can combine the gray values of pixels in 
a small neighborhood. The first characteristic is the size of the neighborhood, which 
we call the window or filter mask. The window size may be reetangular or of any other 
form. We must also specify the position of the pixel relative to the window which will 
receive the result of the operation. With regard to symmetry, the most natural choice 
is to place the result of the operation at the pixel in the center of an odd-sized mask. 

The most elementary combination of the pixels in the window is given by an opera
tion which multiplies each pixel in the range of the filter mask with the corresponding 
weighting factor of the mask, adds up the products, and writes the result to the position 
of the center pixel: 

r r r r 

G~n = L: L: HktGm-k,n-1 = L: L: H-k,-tGm+k,n+l· (5.1) 
k=-r 1=-r k=-r 1=-r 

This equation assumes an odd-sized mask with (2r + 1) x (2r + 1) coeflicients. It 
describes a discrete convolution operation. In comparison to the continuous convolution, 
the integral is replaced by a sum over discrete elements ( compare appendices A.2 and 
A.3). 

The convolution operation is such an important operation that it is worth studying 
it in detail to see how it works. First, we might be confused by the negative signs of 
the indices k and l either for themaskor the image in (5.1). This just means that we 
either rotate the mask or the image around its symmetry center by 180° before we put 
the mask over the image. (We will learn the reason for this rotation in section 5.2.) 
If we want to calculate the result of the convolution at the point ( m, n ), we center 
the rotated mask at this point, perform the convolution, and write the result back to 
position (m, n) (figure 5.1). This operation is performed for all pixels of the image. 
Close to the edges of the image, when the filter mask ranges over the edge of the image, 
we run into difliculties as we are missing some image points. The correct way to solve 
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Figure 5.2: Image convolution by scanning the convolution mask line by line over the image. At the 
shaded pixels the gray value is already been replaced by the convolution sum. Thus the gray values at 
the shaded pixels falling within the filter mask need tobe stored in an extra buffer. 

this problern according to our summations in section 2.3, especially equation (3.17), is 
to take into account that finite image matrices must be thought of as being repeated 
periodically. Consequently, when we arrive at the left edge of the image, we take the 
missing points from the right edge of the image. Wespeak of a cyclic convolution. Only 
this type of convolution will reduce to a simple multiplication in the Fourier space ( see 
appendix A.3) . In practice, this approach is seldom chosen. Instead we add a border to 
the image with half the width of the filter mask. In this border either zeros are written, 
or we extrapolate in one way or the other the gray values from the gray values at the 
edge of the image. The simplest type of extrapolation is to write the gray values of the 
edge pixels into the border. 

Although this approach gives less visual distortion at the edge of the image than 
cyclic convolution, we do introduce errors at the edge of the image with a width of half 
the size of the filter mask. If we choose the extrapolation method, the edge pixels are 
overweighted. 

Equation (5.1) indicates that none of the calculated gray values G:,.,. will flow into 
the computation at other neighboring pixels. This means that the result of the convo
lution operation, i. e., a complete new image, has to be stored in a separate memory 
area. If we want to perform the filter operation in-place, we run into a problem. Let us 
assume that we perform the convolution line by line and from left to right. Then the 
gray values at all pixel positions above and to the left of the current pixel are already 
overwritten by the previously computed results (figure 5.2). Consequently, we need to 
store the gray values at these positions in an appropriate buffer. 

Now, the question arises whether it is possible or even advantageaus to include the 
already convolved neighboring gray values into the convolution at the next pixel. In 
this way, we might be able to do a convolution with fewer operations since we include 
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the previously computed results. In e:ffect, we are able to perform convolutions with 
much less computational e:ffort and also more flexibility. However, these filters, which 
are called recursive filters, are much more difficult to understand and to handle -
especially in the two-dimensional case. 

For a first impression, we consider a very simple one-dimensional example. The 
simplest recursive filter we can think of has the general form 

(5.2) 

This filter takes the fraction 1 - a from the previously calculated value and the fraction 
a from the current pixel. Recursive filters, in contrast to non-recursive filters, work 
in a certain direction, in our example from left to right. For time series, the preferred 
direction seems natural, since the current state of a signal depends only on previous 
values. Filters, which depend only on the previous values of the signal, are called causal 
filters. For images, however, no preferred direction exists. This is the first principal 
problern posed by recursive filters for spatial data. Consequently, we have to search for 
ways to construct noncausal and symmetric filters from recursive filters. 

From (5.2), we can calculate the response of the filter to the discrete delta function 

{ 1 k = 0 
ök = 0 k -=1- 0 ' (5.3) 

i. e., the point spread function or im pulse response of the filter ( compare section 2.2.6). 
Recursively applying (5.2) to the discrete delta function, we obtain 

g'_l 0 
g~ a 

(5.4) 
g~ = a(l- a) 
g;" = a(l- a)m. 

This equation shows several typical general properties of recursive filters: 
• First, the impulse response is infinite, despite the finite nurober of coefficients. For 

Iai < 1 it decays but never becomes exactly zero. In contrast, the impulse response 
of non-recursive convolution filters is always finite. It is equal to the size of the filter 
mask. Therefore the two types of filters are sometimes named finite impulse response 
filters (FIR filters) and infinite impulse response filters (IIR filters ). 

• FIR filters are always stable. This means that they always give a finite response to 
a finite signal. This is not the case for IIR filters. The stability of recursive filters 
depends on the filter coefficients. The filter in (5.2) is instable for Iai ~ 1 since even 
the impulse response diverges. In the simple case of (5.2) it is easy to recognize the 
instability of the filter. Generally, however, it is much more difficult to analyze the 
stability of a recursive filter, especially in dimensions which are two and higher. 

5.1.2 Recursive Filters and Linear Systems 

Recursive filters can be regarded as the discrete counterpart of analog filters. A simple 
analog filter for electrical signals contains resistors, capacitors, and inductors. As an 
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Figure 5.3: Analog filter for time series: a) black-box model: a signal U; is put into an unknown 
system. At the output we measure the signal U0 • b) a resistor-capacitor circuit as a simple example 
for an analog lowpass filter. 

example, we take the simple resistor-capacitor circuit shown in figure 5.3b. The differ
ential equation for this filter can easily be derived from Kirchhoff's current-sum law. 
The current flowing through the resistor from U; to U0 must be equal to the current 
flowing into the capacitor. Since the current flowing into a capacitor is proportional to 
the temporal derivative of the potential U0 , we end up with the first order differential 
equation 

U;- Uo = cu· 
R o• (5.5) 

This equation represents a very important general type of process called a relaxation 
process, which is governed by a time constant T. In our case, the time constant is given 
by T = RC. Generally, we can write the differential equation of a relaxation process as 

(5.6) 

The impulse response h(t) of this system (in case of an RC-circuit the reaction to a 
short voltage impulse) is given by 

h(t)- { 0 t < 0 
- (1/r)exp(-t/r) t~O. 

(5.7) 

In case of a continuous function the impulse response is also known as Green's function. 
Once we know the im pulse response of the filter, we can calculate the response to any 
arbitrary signal by 

00 

Uo(t) = jdt' U;(t')h(t- t'), (5.8) 
0 

since (5.6) is linear in U. Because the impulse response is zerofort < 0 ( causal filter), 
the integration limits extend from 0 to oo only. 

A discrete approximation of the analog RC filter can be derived by transforrning 
the differential equation (5.6) into a finite difference equation 

T ~t 
Uo(t) = ~Uo(t- ~t) + ~U;(t). 

T + ut T + ut 
(5.9) 
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This equation is equivalent to the simple recursive filter (5.2). Wehave already seen this 
identity when comparing the discrete and continuous impulse responses in (5.4) and (5. 7). 
Since the difference equation is only an approximation of the differential equation, dis
crete and continuous filters are better called equivalent when the sampled continuous 
impulse response is equal to the discrete impulse response. In this way, we can derive 
the relationship between the constant a and the time constant r. It is sufficient to 
compare the exponential terms. From 

exp(-t/r) = exp(-mßt/r) = (1-a)m = exp(mln(1-a)], (5.10) 

we derive 
ßt 

r=-ln(1 -a) or a=1-exp(-ßt/r). (5.11) 

With these equations, we obtain a relationship between a continuous process and its 
discrete counterpart. Since the discrete samples resemble the analog process exactly, it 
is not only an approximation. This means that we can exactly simulate analog filters 
with discrete filters, provided we meet the sampling theorem. 

Another example also demonstrates the relationship between recursive filters and 
linear systems. Let us consider the next more complex recursive filter, a second-order 
filter, which relates the current output to the output of the two last samples: 

(5.12) 

The impulse response of this filter can be shown to be ( Oppenheim and Schafer, 1989] 

{ 
rmsin(8(m+1)] 

m>O 
hm = sin8 -

0 m < 0. 
(5.13) 

The transfer function of this asymmetric causal filter is complex: 

A - 1 
h(k) = ( -) ( -), e-ie _ e-".ik eie _ e-".ik 

(5.14) 

with the magnitude 

(5.15) 

At first glance, these formulas might look not familiar, but closer examination re
veals that they describe the discrete analogue to a very important physical system, 
the damped harmonic oscillator. The impulse response describes a sampled damped 
harmonic oscillation which has been excited at time zero: 

h(t) = { exp(-t/r)sin(w0t) t 2:::0 
0 t < 0 . (5.16) 

The transfer function (5.14) contains the physical meaning of the resonance curve for the 
oscillator. If r = 1, the oscillator is undamped, and the transfer function has two poles at 
k = ±8j1r. If r > 1, the resonator is unstable; even the slightest excitement will cause 
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infinite amplitudes of the oscillation. Only for r < 1, the system is stable; the oscillation 
is damped. Comparing (5.13) and (5.16), we can determine the relationship of the 
eigenfrequency w0 and the time constant T of a real-world oscillator to the parameters 
of the discrete oscillator, r and e 

r = exp( -ßtjr) and 8 = Woßt. (5.17) 

The last example of the damped oscillator illustrates that there is a dose relationship 
between discrete filter Operations and analog physical systems. Thus filters may be used 
to represent a real-world physical process. They model how the corresponding system 
would respond to a given input signal g. Actually, we have already made use of this 
equivalence in our discussion of optical imaging in section 2.2.6. There we found that 
imaging with a homogeneaus optical system is completely described by its point spread 
function and that the image formation process can be described by convolution. Optical 
imaging tagether with physical systems such as electrical filters and oscillators of all 
kinds, can thus be regarded as representing an abstract type of processes or systems, 
called linear shift-invariant systems. 

This generalization is very useful for image processing, since we can describe both 
the image formation and image processing as convolution operations with the same 
formalism. Moreover, the images observed may originate from a physical process which 
can be modelled by a linear shift-invariant system. Then an experiment to find out how 
the system works can be illustrated using the black-box model (figure 5.3a). The black 
box means that we do not know the composition of the system observed or, physically 
speaking, the laws which govern it. We can find them out by prohing the system 
with certain signals (input signals) and watehing the response by measuring some other 
signals ( output signals ). If it turns out that the system is linear, it will completely 
be described by the impulse response. Many biological and medical experiments are 
performed in this way. Biological systems are typically so complex that the researchers 
often stimulate them with signals and watch for responses in order to be at least able 
to make a model. From this model more detailed research may start to investigate 
how the observed system functions might be realized. In this way many properties of 
biological visual systems have been discovered. But be careful - a model is not the 
reality! It pictures only the aspect that we probed with the applied signals. 

Oppenheim et al. [1983] give a thorough and coherent treatment of linear system 
theory. Marple [1987] discusses in detail digital spectral analysis with emphasis on 
model-based approaches. 

5.1.3 Rank Value Filtering 

The considerations on how to combine pixels have resulted in the powerful concept of 
linear shift-invariant systems. Thus we might be tempted to think that we have learnt 
all we need to know for this type of image processing operations. This is not the case. 
There is another dass of operations which works on a quite different concept. 

We might characterize a convolution with a filter mask by weighting and summing 
up. The dass of operations to combine neighboring pixels we are considering now may 
be characterized by comparing and selecting. They are called rank value filters. For this 
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Figure 5.4: Illustration of the principle of rank value filters with a 3 X 3 median filter. 

we take all the gray values of the pixels which lie within the filter mask and sort them 
by ascending gray value. This sorting is common to all rank value filters. They only 
differ by the position in the list from which the gray value is picked out and written back 
to the center pixel. The filter operation which selects the medium value is called the 
median filter. Figure 5.4 illustrates how the median filter works. The filters choosing 
the minimum and maximum values are denoted as the minimum and maximum filter, 
respectively. 

There are a number of significant differences between linear convolution filters and 
rank value filters. First of all, rank value filters are nonlinear filters. Consequently, 
it is much more diflicult to understand their general properties. We will discuss the 
consequences in detail throughout this chapter in comparison with the convolution 
filters. Since rank value filters do not perform arithmetic operations but select pixels, 
we will never run into rounding problems. These filters map a discrete set of gray values 
onto themselves. 

5.2 Linear Shift-Invariant Filters 

In this section we discuss the general properties of filters which are both linear and 
shift-invariant. We denote this filter type as LSI filters. The theoretical foundations 
laid down in this section will help us enormously for practical application. In the 
previous section we discussed convolution as a natural way to combine neighboring 
pixels. Here we will go the other way round. We start with a discussion of linearity and 
shift invariance and end up with the conclusion that convolution is the only dass of 
operation meeting these properties. lnstead of filters, we will speak of operattJrs which 
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map or transform an image onto itself. In the following we will denote these operators 
with calligraphic symbols and write 

G' =1iG (5.18) 

for an operator 1{ which transforms the image G into the image G'. Such a general 
notation is very helpful, since it allows us to write complex operations easily comprehen
sible. Furthermore, it does not matter whether the image is represented by an M x N 
matrix in the space or the Fourier domain. The reason for this representation indepen
dent notation lies in the fact that the general properties of operations do not depend on 
the actual representation. The mathematical foundation is composed of inner product 
vector spaces, which we discussed in section 3.3.1. In this sense, we regard an image as 
an element in a complex-valued Mx N-dimensional vector space. 

5.2.1 Linearity 

Linear operators are defined by the principle of Superposition. 1f G and G' are two 
MX N images, a and b two complex-valued scalars, and 1{ is an operator which maps 
an image onto another image of the same dimension, then the operator is linear if and 
only if 

1i(aG + bG') = a?iG + b1iG'. (5.19) 

We can generalize (5.19) to the superposition of many inputs 

1i ( ~akGk) = ~ak1{Gk. (5.20) 

The superposition property makes linear operators very useful. We can decompose a 
complex image into simpler components for which we can easily derive the response of 
the operator and then compose the resulting response from that of the components. 

It is especially useful to decompose an image into its individual elements. Formally, 
this means that we compose the image with the base images of the chosen representa
tion, which is a series of shifted discrete 8 or impulse images D 

k/n-{ 1 k=k',Z=Z' (5.21 ) 
- 0 otherwise 

Thus we can write 
M-lN-1 

G = L L:Gmn mnn. (5.22) 
m=On=O 

As an example foranonlinear operator, we take the median filter M, which has been 
introduced in section 5.1.3. For the sake of simplicity, we consider a one-dimensional 
case with a 3-element median filter. It is easy to find two vectors for which the median 
filter is not linear: 

M ([ · · · 0 1 0 - 1 0 1 · · · ] + [ · · · 1 1 0 0 - 1 - 1 · · · ]) 

= [···10-1-1···]# 

M[ ··· 010-101 ··· ]+M[ ··· 1100-1 -1···) 

= [···100-1···]. 

(5.23) 
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5.2.2 Shift Invariance 

Another important property of an operator is shift invariance or homogeneity. It means 
that the response of the operator does not explicitly depend on the position in the image. 
If we shift an image, the output image is the same but for the shift applied. We can 
formulate this property more elegantly if we define a shift operator k/S which is defined 
as 

(5.24) 

Then we can define a shift-invariant operator in the following way: an operator is shift 
invariant if and only if it commutes with the shift operator, i. e., 

(5.25) 

It is important to note that the shift operator kiS itself is a linear shift-invariant oper
ator. 

5.2.3 Impulse Response, Transfer Function, and Eigenfunc
tions 

From our considerations in sections 2.2.6 and 5.1.1, we are already familiar with the 
point spread function or impulse response of either a continuous or a discrete operator. 
Here we introduce the formal definition of the point spread function for an operator 1{ 

onto an Mx N-dimensional vector space 

(5.26) 

Now we can use the linearity (5.20) and shift invariance (5.25) of the operator 1{ 

and the definition oftheimpulse response (5.26) to calculate the result of the operator 
on any arbitrary image G in the space domain 

('HG)mn = with (5.20) 

linearity 

= with (5.24) 

shift invariance (5.27) 

with (5.26) 

with (5.24) 

using k' = m - k, l' = n- l. 
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These calculations prove that a linear shift-invariant operator must necessarily be a 
convolution operation in the space domain. There is no other operator type which is 
both linear and shift-invariant. 

Next we are interested in the question whether special types of image E exist which 
are preserved except for multiplication with a scalar by a linear shift-invariant operator, 
1. e., 

1iE = >.E. (5.28) 

A vector (image) which meets this condition is called an eigenvector or characteristic 
vector of the operator, the scaling factor >. an eigenvalue or characteristic value of the 
operator. 

As a simple linear shift-invariant operator, we first consider the shift operator S. It 
is quite obvious that for real images only a trivial eigenimage exists, namely a constant 
image. For complex images, however, a whole set of eigenimages exists. We can find it 
when we consider the shift property of the complex exponentials 

(5.29) 

which is given by 

kls uvw _ ( 21ri ku) ( 21ri lv) uvw -exp -~ exp -~ . (5.30) 

The latter equation directly states that the complex exponentials uvw are eigenfunc
tions of the shift operator. The eigenvalues are complex phase factors which depend on 
the wave number indices ( u, v) and the shift ( k, l). When the shift is one wavelength, 
(k,l) = (M/u,N/v), the phase factor reduces to 1 as we would expect. 

Now we are curious to learn whether any linear shift-invariant operator has such a 
handy set of eigenimages. It turnsout that alllinear shift-invariant operators have the 
same set of eigenimages. We can prove this statement by referring to the convolution 
theorem (see appendix A.3) which states that convolution is a point-wise multiplication 
in the Fourier space: 

G'=H*G ~ it=H·G. (5.31) 

The element-wise multiplication of the two matrices H and Gin the Fourier space is 
denoted by a centered dot to distinguish this operation from matrix multiplication which 
is denoted without any special sign. Equation (5.31) tells us that each element of the 
image representation in the Fourier space Guv is multiplied by the complex scalar Huv· 
Since each point Guv in the Fourierspace represents a base image, namely the complex 
exponential uvw in (5.29) multiplied with the scalar Guv, they are eigenfunctions of any 
convolution operator. The eigenvalues are then the elements of the transfer function, 
fiuv· In conclusion, we can rewrite (5.31) 

(5.32) 

Another proof is based on the theorem that two commutable operators have the same 
set of eigenvectors [ Grawert, 1973). 
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5.2.4 Symmetry 

In section 5.1.1 we have already pointed out that for the sake of symmetry, filter masks 
with an odd number of pixels are preferred. In this section we will continue the discus
sion on symmetry of LSI filters and how it effects the representations of the operators 
in the space and wave number domain. 

Representation in the Space Domain 
In section 5.2.3 (5.27) we found that an LSI filter can be represented in the space domain 
as a convolution of the operator image H with the image G 

M-lN-1 

G:,.n = L L Hk,IGm-k,n-1· (5.33) 
k=O 1=0 

In section 5.1.1 (5.1) we wrote it as the convolution with a small filter mask centered 
around the index (0, 0) 

r r 

G:,.n = L L H-k,-IGm+k,n+l· (5.34) 
k=-r 1=-r 

Both representations are equivalent if we consider the periodicity in the space domain 
(section 3.2.3). The restriction of the sum in (5.34) reflects the fact that the impulse 
response or PSF of the filter is zero except for the few points around the center pixel. 
Thus the latter representation is much more practical and gives a better comprehension 
of the PSF. For example, the filter mask 

[l -1 -2] o. -1 
1 0 

(5.35) 

written as an MX N matrix reads as 

o. -1 0 0 1 
1 0 0 0 2 
0 0 0 0 0 

(5.36) 

0 0 0 0 0 
-1 -2 0 0 0 

In the following we will write all filter masks in the much more comprehensive first 
notation where the filter mask is centered around the point H00 • 

Concerning symmetry, we can distinguish two important classes of filters: even and 
odd filters with the following condition 

(5.37) 

where the + and - signs stand for even and odd symmetry. From this definition we 
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can immediately reduce (5.34) to make the computation of filters more effi.cient 

G'mn = HooGmn + LLHkt(Gm-k,n-l + Gm+k,n+l) even 
k l 

G'mn = LLHkt(Gm-k,n-l- Gm+k,n+l) odd 
k l 

r 

G'mn = HoGm,n + LHt(Gm,n-l + Gm,n+l) even, 1-D horizontal 
!=1 

r 

G'mn = Lflt( Gm,n-l - Gm,n+l) odd, 1-D horizontal. 
!=1 

(5.38) 

The double sums now only run over half of the filter mask, excluding the center pixel 
which must be treated separately because it has no symmetric counterpart. It can 
be omitted for the odd filter since the coeffi.cient at the center pixel is zero. In these 
equations we also include the special case of a one-dimensional horizontal filter mask 
of size 1 x (2r + 1). Corresponding equations can be written for 1-D vertical masks. 

For FIR filters, the filter mask is equal to the point spread function, as we can 
easily verify by convolving the filter mask with an impulse image. Geometrically, we 
can rotate the filter mask by 180°, and then scan the mask over the image. Now we 
understand the reason for the inversion of the sign in the indices k, l in (5.34). If the 
change in the sign were omitted, the point spread function would be a 180° rotated 
copy of the filter mask. 

Now let us study recursive or IIR filters. Generally, we can write 

K L r r 

G'mn = L L RktG'm±k,n±l + L L HktGm-k,n-l· (5.39) 
k=O l=O,k+l#O k=-r l=-r 

'----....----' 
IIR part FIR part 

The filter contains two parts, a conventional FIR part with a (2r + 1) x (2r + 1) filter 
mask and an IIR part which takes the coeffi.cients from only one quadrant except for 
the origin. Such a restriction is necessary, since the recursive part falls back upon 
previously calculated pixels. The sign of the indices (k, l) in G determines the general 
direction in which the recursive filter is applied. There are four principal directions in 
a two-dimensional image: a) from left to right and top to bottom, b) from right to left 
and top to bottom, c) from left to right and bottom to top, and d) from right to left 
and bottom to top. 

The point spread function of these filters is not given directly by the filter mask, but 
must be calculated recursively as demonstrated in section 5.1.1 (5.4). Two problems 
arise. First, the PSF does not show any symmetry but generally lags behind in the 
direction of the filter. Second, the PSF is infinite. Thus IIR filters are in principle only 
suitable for infinite images. In practice, we must ensure that the PSF is significantly 
low in a distance which is small compared to the size of the image. Otherwise we run 
into similar border problems as with large FIR filters (see section 5.1.1). 

Asymmetrical filters are not of much use for image processing, since they shift the 
image structures. An even filter only blurs a point but does not shift its center of 
gravity. If we use filters which shift points, the exact position measurements will not 
be possible. 
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We can, however, still use recursive filters if we run the same filter in two opposite 
directions or in all the directions possible over the image and add or subtract the filter 
results. With this operation, the point spread functions add to an even and odd point 
spread function. Let i H, i = 1, 2, 3, 4 be the point spread functions of the four different 
directions in which an IIR filter can propagate on an image. The following symmetries 
are then valid: 

(5.40) 

where the addition in the superscript is performed modulo 4. Consequently, we can 
obtain the following symmetrical PSFs 

i Hmn ± i+2 Hmn 

( 1 Hmn ± 3 Hmn) ± (2 Hmn ± 4 Hmn), 
(5.41) 

which are of use in digital image processing. For further details see section 6.1.3. 

Representation in the Wave Number Domain 
In the wave number domain, an LSI filter is represented by its transfer function. 

The transfer function directly expresses how periodic structures change in amplitude 
and phase as a function of the wave number k. In this section we consider the influence 
of the symmetry of the filter masks on the transfer function. The relationship between 
the transfer function and the point spread function is given by the discrete Fourier 
transform. For correct scaling of the transfer function, the factor 1/ NM is omitted: 

, M-1N-1 ( 27fi mu) ( 27fi nv) 
Huv = L L Hmn exp --- exp --- . (5.42) 

m=On=O M N 

This relation can be considerably simplified for even and odd filters. We can then 
combine the corresponding symmetric terms Hm,n and HM-m,N-n in the sum and write 

fluv = Hoo + g [ Hmn exp (- 21f:U) exp ( _ 27f~;w) 
(m,n)ESh (5.43) 

Now the sum runs over one half space Sh only. The origin is handled in addition since 
no symmetric point exists for it. Using the symmetry properties for even and odd filter 
masks, we obtain the following equations for these even and odd filter masks: 

, (27rmu 21fnv) 
Huv = Hoo + g 2Hmn cos -u + ~ even 

(m,n)ESh 

H, __ . ~~ 2H . (27rmu 21fnv) 
uv - 1 ~ mn sm M + N 

(5.44) 
odd. 

(m,n)ESh 

These equations can be written more conveniently if we express the wave number by 
the scaled wave number k = (2u/M,2v/N) as introduced in section 2.3.3, whose com
ponents k; lie in the ] - 1, 1 [ interval. Then we obtain for even filters 

Huv = Hoo + L L 2Hmn cos[7r( mk1 + nk2)], .,____....... 
(m,n)ESh 

(5.45) 
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and for odd filters 

Huv = -i LL 2Hmnsin(7r(mkl + nk2)]. (5.46) .__._.. 
(m,n)ESh 

These equations are very useful, since they give a straightforward relationship be
tween the coeffi.cients of the filter masks and the transfer function. They will be our 
main tool to study the properties of filters for specific image processing tasks. They 
are also valid for sets of even or odd IIR filters as described above provided we have 
calculated the point spread function. 

5.2.5 General Properties of Linear Shift-Invariant Operators 

We now introduce an operator notation which helps us to describe composite image pro
cessing operations. Alloperators will be written with calligraphic letters, as B, 1J, 1-l, S. 
We will systematically reserve special letters for certain operators. For example, S 
always means a shift operator. Superscripts in front of the operator will be used to 
specify the operator in more detail, as kiS denotes a shift operator which shifts the 
image by k pixels to the right, and 1 pixels down. 

Consecutive application is denoted by writing the operators one after the other. The 
right operator is applied first. Consecutive application of the same operator is denoted 
by the exponents 

(5.47) 
m-times 

If the operator acts on a single image, the operand, which stands to the right in the 
equations, we will omit the operand. In this way we can write operator equations. In 
(5.47), we already made use of this notation. Furthermore, we will use braces in the 
usual way to control the order of execution. 

U sing this operator notation, we will now summarize the general properties of linear 
shift-invariant image processing operators. This notation and the general properties of 
convolution filters will be a valuable help in understanding complex image processing 
operations. 

Linearity; Principle of Superposition 
1-l(aG + bG') = a?-lG + b?-lG'. (5.48) 

Commutativity 
We can change the order of operators: 

1-{1-{' = 1-{'1-{. (5.49) 

This property is easy to prove in the Fourier domain, since there the operators reduce 
to an element-wise scalar multiplication which is commutative. 
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Associativity 
1{'1{" = 1{. (5.50) 

Since LSI Operations are associative, we can compose a complex operator out of simple 
operators. Likewise, we can try to decompose a given complex operator into simpler 
operators. This feature is essential for an effective implementation of convolution op
erators. As an example, consider the operator 

1 4 6 4 1 
4 16 24 16 4 
6 24 36 24 6 
4 16 24 16 4 
1 4 6 4 1 

{5.51) 

We need 25 multiplications and 24 additions per pixel with this convolution mask. We 
can easily verify, however, that we can decompose this mask into two simpler masks: 

1 4 6 4 1 1 
4 16 24 16 4 4 
6 24 36 24 6 = (1 4 6 4 1) * 6 (5.52) 
4 16 24 16 4 4 
1 4 6 4 1 1 

Applying the two convolutions with the smaller masks one after the other, we need 
only 10 multiplications and 8 additions. Filter masks which can be decomposed into 
one-dimensional masks along the axes are called separable masks. We will denote one
dimensional operators with an index indicating the axis. We are then able to write a 
separable operator B in a three-dimensional space 

{5.53) 

In case of one-dimensional masks directed in orthogonal directions, the convolution re
duces to an outer product. Separable :filters are more efficient the higher the dimension 
of the space. Let us consider a 9 x 9 x 9 :filter mask as an example. A direct implemen
tation would cost 729 multiplications and 728 additions per pixel, while a separable 
mask of the same size would just need 27 multiplications and 24 additions, about a 
factor of 30 fewer operations. 

Distributivity over Addition 
Since LSI operators are elements of the same vector space on which they can operate, 
we can de:fine addition of the Operators by the addition of the vector elements. We then 
find that LSI operators distribute over addition 

1i'G + 1i"G = (1i' + 1i")G =HG. (5.54) 

Because of this property we can also integrate operator additions into our general 
operator notation. 
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Inverse Operators 
Can we invert a filter operation? This question is significant since degradations such 
as irnage blurring by rnotion or by defocused optics can also be regarded as a filter 
operation. If an inverse operator exists and if we know the point spread function of 
the degradation, we can reconstruct the original, undisturbed irnage. The problern of 
inversing a filter operation is known as deconvolution or inverse filtering. 

By considering the filter operation in the Fourier dornain, we irnrnediately recognize 
that we can only reconstruct those wave nurnbers for which the transfer function of the 
filter does not vanish. In practice, we are rnuch rnore lirnited because of quantization 
and additional noise in the irnage. If a wave nurnber is attenuated below a critical 
level which depends on the noise and quantization levels, it will not be recoverable. It 
is obvious that these conditions lirnit the power of a Straightforward inverse filtering 
considerably. The problern of inverse filtering is considered further in section 13.3.2. 



6 Mean and Edges 

In this chapter we will apply neighborhood operations to analyze two elementary struc
tures: the mean gray value and changes in the gray values. The determination of 
a correct mean value also includes the suppression of distortions in the gray values 
caused by sensor noise or transmission errors. Changes in the gray value mean, in the 
simplest case, the edges of objects. Thus edge detection and smoothing are complemen
tary operations. While smoothing gives adequate averages for the gray values within 
the objects, edge detection aims at estimating the boundaries of objects. 

6.1 Smoothing 

The mean gray value is obtained by a filter operation which "somehow" smooths the 
image. Such an operationalso suppresses noise or individual pixels which are distorted 
by transmission errors. Generally, these operations can be characterized by attenuating 
fine-scale features, i. e., high wave numbers. This dass of filters is called smoothing or 
lowpass filters. We will describe these filters in detail, since they are elementary filters 
which will be used to compose more complex filter operations (see, for example, sections 
7.3, 8.2.2, 15.3.2, and 17.4). 

6.1.1 Box Filters 

It is obvious that smoothing filters will average pixels within a small neighborhood. 
The simplest method is to add all the pixels within the filter mask and to divide the 
sum by the number of pixels. Such a simple filter is called a box filter. Box filters are 
an illustrative example as to how to design a filter properly. As an introduction, we 
consider a 3 X 3 box filter 

(6.1) 

The factor 1/9 scales the result of the convolution sum. For any smoothing filter, the 
sum of all the coefficients should be one. Otherwise the gray value in a region with 
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constant gray values is not preserved. We apply this mask to a vertical edge 

0 0 1 1 
0 0 1 1 
0 0 1 1 

0 1/3 2/3 1 
0 1/3 2/3 1 
0 1/3 2/3 1 

As expected for a smoothing operation, the sharp edge is transformed into a smoother 
ramp with a gradual transition from 0 to 1. Smoothing filters attenuate structures with 
high wave numbers. Let us first try to convolve a vertical structure with a wavelength 
of 3 pixel distance by the 3 x 3 box filter 

1 -2 1 1 -2 1 
1 -2 1 1 -2 1 
1 -2 1 1 -2 1 +[t: n 0 0 0 0 0 0 

0 0 0 0 0 0 
0 0 0 0 0 0 

It turns out that the 3 x 3 box filter completely removes a structure with the wave
length 3. From a good smoothing filter we expect that all structures with a wave 
number above a certain threshold are removed. This is not the case for the 3 x 3 box 
filter. As an example, we take a structure with the wavelength 2: 

1 -1 1 -1 1 -1 
1 -1 1 -1 1 -1 
1 -1 1 -1 1 -1 

1 [ 1 
*9" ~ 

-1/3 1/3 -1/3 1/3 -1/3 1/3 

-1/3 1/3 -1/3 1/3 -1/3 1/3 

-1/3 1/3 -1/3 1/3 -1/3 1/3 

Obviously, the box filter is not a good lowpass filter. Directly convolving the filter 
with test images containing periodic structures of different wavelength to study its wave 
number response is a ponderous method. The attenuation of periodic structures as a 
function of the wave number is directly given by the transfer function. The box filter 
is an even filter. Thus we can apply (5.45). First we consider a one-dimensional 1 x 3 
box filter. Its mask is given by 

3 Rx = [ 1/3 1/3 1/3]. (6.2) 

Thus only the coefficients Hoo = H01 = 1/3 are unequal to zero and the transfer function 
reduces, according to (5.45), to 

(6.3) 

The even filter masks result in a real transfer function. This means that for positive 
values no phase shift occurs, while for negative values the signal is inverted. The transfer 
function is shown in figure 6.1a. Our exemplary computations are verified. The transfer 



6.1 Smoothing 119 

1.0 ~~---.-----,---,----,-----, 

k b) 

0.5 

0.0 

-0.5 -0.5 

0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

Figure 6.1: Transfer functions of one-dimensional smoothing filters: a) box filters of size 3, 5, and 7; 
b) binomial filters as indicated. 

function shows a zero at k = 2/3. This corresponds to a wave number which is sampled 
3 times per wavelength. The smallest possible wavelength (k = 1), which is sampled 
twice per wavelength, is only damped by a factor of three. The negative sign indicates 
an interchange of minima and maxima. In conclusion, the 3 x 3 box filter is not a good 
lowpass filter. It is disturbing that the attenuation does not increase monotonously 
with the wave number but tends to oscillate. Even worse, structures with the largest 
wave number are not attenuated strongly enough. 

Larger box filters do not show a significant improvement (figure 6.1a). On the 
contrary, the oscillatory behavior is more pronounced and the attenuation is only pro
portional to the wave number. For large filter masks, we can approximate the discrete 
with m coefficients by a continuous box function of width m- 1. The transfer function 
is then given by a sinc function (see appendix A.2): 

m Rx r::::J sin(27r(m -1)k). 
21r(m- 1)k 

(6.4) 

Now we turn to two-dimensional box filters. To simplify the arithmetic, we utilize 
the fact that the box filter is a separable filter and decompose it into 1-D vertical and 
horizontal components, respectively: 

[ 
1 

3 3 3 1 R= Rx* Ry=- 1 
9 1 

11]1 1[1] 1 1 =-[1 1 1]*- 1 . 
1 1 3 3 1 

The transfer function of the one-dimensional filters is given by (6.3) (replacing kx by 
ky for the vertical filter). Since convolution in the space domain corresponds to multi
plication in the wave number domain, the transfer function of R is 

(6.5) 
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Figure 6.2: Transfer function oftwo-dimensional box filters shown in a pseudo 3-D plot and a contour 
plot. a) 3 x 3 box filter; b) 7 x 7 box filter; distance of the contour lines: 0.05. 

From this equa.tion and from figure 6.2a, we can conclude that this 2-D box filter 
is a poor lowpass filter. A larger box filter, for example one with a 7 x 7 mask (fig
ure 6.2b ), does not perform any better. Besides the disadvantages already discussed 
for the one-dimensional case, we are faced with the problern that the transfer function 
is not isotropic, i. e., it depends, for a given wave number, on the direction of the wave 
number. 

When we apply a box filter to an arbitrary image, we hardly observe these effects 
(figure 6.6). They are only revealed if we use a carefully designed test image. This image 
contains concentric sinusoidal rings. Their wavelength increases with the distance from 
the center. When we convolve this image with a 7 X 7 or 9 X 9 box filter, the deviations 
from an isotropic transfer function become readily visible (figure 6.3). We can observe 
the wave numbers which entirely vanish and the change of gray value maxima in gray 
value minima and vice versa in some regions, indicating the 180° phase shift caused by 
negative values in the transfer function. 
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Figure 6.3: Test of the smoothing with a 7 x 7 and a 9 x 9 box filter using a test image with concentric 
sinusoidal rings. 

From this experience, we can learn an important lesson. We must not rate the 
properties of a filter operation from its effect on arbitrary images, even if we think that 
they seem to work correctly. Obviously, the eye perceives a rather qualitative impression 
(see section 1.3). For quantitative scientific applications we need a quantitative analysis 
of the filter properties. A careful analysis of the transfer function and the use of carefully 
designed test images are appropriate here. 

Now we turn back to the question of what went wrong with the box filter. We 
might try to design a better smoothing filter directly in the wave number space. An 
ideal smoothing filter would cut off all wave numbers above a certain threshold value. 
We could use this ideal transfer function and compute the filter mask by an inverse 
Fourier transform. However, we run into two problems which can be understood without 
explicit calculations. Theinverse Fourier transform of a box function is a sinc function. 
This means that the coefficients decrease only proportionally to the distance from the 
center pixel. We would be forced to work with large filter masks. Furthermore, the 
filter has the disadvantage that it overshoots at the edges. 
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6.1.2 Binomial Filters 

From our experience with box filters, we conclude that the design of filters is a difficult 
optimization problem. If we choose a small reetangular filter mask, we get a poor trans
fer function. If we start with an ideal transfer function, we get large filter masks and 
overshooting filter responses. The reason for this behavior is because of a fundamen
tal property of Fourier transform called the classical uncertainty relation in physics or 
the time-bandwidth product in the signal processing Iiterature [Marple, 1987). Herewe 
brießy discuss what the uncertainty relation means for a steep edge. An edge consti
tutes a discontinuity or an impulse in the first derivative. The Fourier transform of an 
impulse is evenly spread over the whole Fourier domain. U sing the integral property of 
the Fourier transform (appendix A.2), an integration of the derivative in the space do
main means a division by k in the Fourier domain. Then we know without any detailed 
calculation that in the one-dimensional case the envelope of the Fourier transform of a 
function which shows discontinuities in the space domain will go with k- 1 in the wave 
number domain. This was exactly what we found for the Fourier transform of the box 
function, the sinc function. 

Considering this basic fact, we can design better smoothing filters. One condition 
is that the filter masks should gradually approach zero. 

Here we will introduce a dass of smoothing filters which meets this criterion and 
can be calculated very efficiently. Furthermore these filters are an excellent example of 
how more complex filters can be built from simple components. The simplest and most 
elementary smoothing mask we can think of for the one-dimensional case is 

(6.6) 

which averages the gray values of two neighboring pixels. We can use this mask m 
times in a row on the same image. This corresponds to the filter mask 

m tim.es 

or written as an operator equation 

B'; = BxBx ... Bx. ..____......... 
m tim.es 

Some examples of the resulting filter masks are: 

1/4(1 21) 
1/8 (1 3 3 1) 
1/16(14 6 41) 
1/256 (1 8 28 56 70 56 28 8 1) . 

(6.7) 

(6.8) 

(6.9) 

Because of symmetry, only the odd-sized filter masks are of interest. In order to perform 
a convolution with the asymmetric mask 1/2 (1 1) correctly, we store the result in the 
right and left pixel alternately. 
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The masks contain the values of the discrete binomial distribution. Actually, the 
iterative composition of the mask by consecutive convolution with the 1/2 [1 1] mask is 
equivalent to the computation scheme of Pascal's triangle: 

n f (J2 

0 1 1 0 
1 1/2 1 1 1/4 
2 1/4 1 2 1 1/2 
3 1/8 1 3 3 1 3/4 
4 1/16 1 4 6 4 1 1 

(6.10) 

5 1/32 1 5 10 10 5 1 5/4 
6 1/64 1 6 15 20 15 6 1 3/2 
7 1/128 1 7 21 35 35 21 7 1 7/4 
8 1/256 1 8 28 56 70 56 28 8 1 2 

n denotes the order of the binomial, f the scaling factor 2-n, and u2 the variance, i. e., 
effective width, of the mask. We can write the values for the coefficients of an odd-sized 
(2R + 1) binomial mask directly using the binomial distribution (4.6) 

2R+I _ 1 (2R + 1)! 
Br - 22R+I (R- r)!(R + r)! r = -R, ... 'R. (6.11) 

The computation of the transfer function of a binomial mask is also very simple, 
since we only need to know the transfer function of B2 • The transfer function of ß 2R is 
then given as the Rth power. With the help of (5.45) we obtain 

A 2R 1 [ - l R 1!" 2 - -
Bx = 2R 1 + cos(1rk) >~:d- R4k2 + O(k4 ). (6.12) 

The graphical representation of the transfer function in figure 6.1b reveals that 
binomial filters are much better smoothing filters. The transfer function decreases 
monotonically and approaches zero at the largest wave number. The smallest mask, 
B2, has a halfwidth of k/2 or discrete u = M/4. This is a periodic structure which is 
sampled four times per wavelength. For larger masks, both the transfer function and 
the filter masks approach the Gaussian distribution with an equivalent variance. Larger 
masks result in smaller half-width wave numbers in agreement with the uncertainty 
relation. 

Two-dimensional binomial filters can be composed from a horizontal and a vertical 
1-D filter 

Bn = B;B;. (6.13) 

The smallest mask of this kind is a 3 x 3-binomial filter ( R = 1): 

B 2 = - [ 1 2 1 j * ~ 2 = 2_ 2 4 2 . 1 [1] [121] 
4 4 1 16 1 2 1 

(6.14) 

The transfer function of a (2R + 1) X (2R + 1)-sized binomial filter is given by 

' 2R 1 [ ( - ) ( - ) l R B = 22R 1 + cos(1rkx) 1 + cos(dy) . (6.15) 
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Figure 6.4: Test of the smoothing with a 8 4 and 8 16 binomial filter using a test image with concentric 
sinusoidal rings. 

The transfer functions of 8 2 and 8 4 are shown in figure 6.5. Already the small 3 X 3 
filter is remarkably isotropic. Larger deviations from the circular contour lines can 
only be recognized for larger wave numbers, when the transfer function has dropped 
to 0.3 (figure 6.5a). Generally, the transfer function (6.15) is not isotropic. A Taylor 
expansion in k for n = 1 

A 2 71"2 - 71"4 - 71"4 - - -
B ~ 1- -k2 + -k4 + -k2 k2 + O(k6 ) 4 48 48 X y 

shows that the second order term is isotropic. Only the fourth order term contains an 
anisotropic term which increases the transfer function in the directions of the diagonals 
(figure 6.5a). In the graph for the 5 X 5 filter (figure 6.5b ), we notice that the residual 
anisotropy is even smaller. The insignificant anisotropy of the binomial filters also 
becomes apparent when applied to the test image in figure 6.4. 

Figures 6.6b and c show smoothing with two different binomial filters. There we 
observe that the edges get blurred. Fine structures as in the branches of the tree become 
lost. Smoothing is one technique to suppress Gaussian noise. Binomial filters can 
reduce the noise level considerably but only at the price of blurred details (figure 6.7a 
and c). Binary noise, i. e., totally wrong gray values for a few randomly distributed 
pixels (figure 6.7b), which is typically caused by transmission errors, is handled poorly 
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Figure 6.5: Transfer function oftwo-dimensional binomial filters: a) 3 x 3, R = 1; b) 5 x 5, R = 2; 
distance of the contour lines: 0.1. 

by linear filters. The images become blurred, but we still see the effect of the binary 
nmse. 

We close our considerations about binomial filters with some remarks on fast algo
rithms. A direct computation of a (2R + 1) x (2R + 1) filter mask requires (2R + 1 )2 

multiplications and (2R + 1 )2 - 1 additions. If we decompose the binomial mask in the 
elementary smoothing mask 1/2 [1 1] and apply this mask in horizontal and vertical di
rections 2R times each, we only need 4R additions. All multiplications can be handled 
much more efficiently as shift operations. For example, the computation of a 17 X 17 
binomial filter requires only 32 additions and some shift operations compared to 289 
multiplications and 288 additions needed for the direct approach. 
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Figure 6.6: Illustration of smoothing filters: a) original image; b) 5 x 5 box filter; c) 9 x 9 box filter; d) 
17 x 17 binomial filter (B16); a set ofrecursive filters (6.19) running in horizontal and vertical direction; 
e) p = 2; f) p = 32. 
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Figure 6.7: Suppression of noise with smoothing filters: a) image from figure 6.6 with Gaussian noise; 
b) image with binary noise; c) image a) filtered with a 17 X 17 binomial filter (816); d} image b) filtered 
with a 9 X 9 binomial filter (88}; e) image a) filtered with a 5 x 5 median filter; f} image b} filtered 
with a 3 x 3 median filter. 
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6.1.3 Recursive Smoothing Filters 

Now we turn to recursive smoothing filters. Basically, they work the same as non
recursive filters. Principally, we can replace any recursive filter with a non-recursive 
filter whose filter mask is identical to the point spread function of the recursive filter. 
The real problern is the design of the recursive filter, i. e., the determination of the 
filter coe:fficients for a desired transfer function. While the theory of one-dimensional 
recursive filters is standard knowledge in digital signal processing (see, for example, Op
penheim and Schafer [1989]), the designoftwo-dimensional filters is still not adequately 
understood. The main reason are the fundamental differences between the mathematics 
of one- and higher-dimensional z-transforms and polynomials [Lim, 1990]. 

Despite these theoretical problems, recursive filters can be applied successfully in 
digital image processing. In order to avoid the filter design problems, we will use only 
very simple recursive filters which are easily understood and compose them to more 
complex filters, similar to the war we constructed the dass of binomial filters from the 
elementary smoothing mask 1/2 1 1 ]. In this way we will obtain a dass of recursive 
filters which are not optimal from the point of view of filter design but which are useful 
in practical applications. 

In the first composition step, we combine causal recursive filters to symmetric filters. 
We start with a general one-dimensional recursive filter with the transfer function 

+ A = a(k) + ib(k). (6.16) 

The index + denotes the run direction of the filter. The transfer function of the same 
filter but running in the opposite direction is 

-A = a(k)- ib(k). (6.17) 

Only the sign of the imaginary part of the transfer function changes, since it corresponds 
to the uneven part of the point spread function, while the real part corresponds to the 
even part. We now have several possibilities to combine these two filters to symmetrical 
filters which are useful for image processing: 

addition A 1 ( A A ) •A=2" +A+-A = a(k) 

subtraction OA=~(+.A--.A) = ib(k) (6.18) 

multiplication A=+.A-.A = a2 (k) + b2(k). 

Addition and multiplication ( consecutive application) of the left and right running 
filter yields even filters, while subtraction results in an odd filter. For smoothing filters, 
which have even masks, we can only use addition and multiplication. 

As the elementary smoothing filter, we use the two-element lowpass filter we have 
already studied in section 5.1.1: 

Ax: G~n = ~ [(p-1)G~,n±1 + Gmn] 7 PE JZ, P > 1, (6.19) 
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Figure 6.8: Transfer function of the recursive lowpass filter (6.22) for different values of p as indicated. 

where we replaced a by p with a = (p- 1) / p for the sake of an efficient implementation 
of the filter. The impulse response is then given by 

1 ±oo ( -1)±m ±Ax=-E P_ 
Pm=O P 

(6.20) 

The transfer function of this filter can easily be calculated by taking into account 
that the Fourier transform of (6.20) forms a geometric series: 

±' - 1 Ax(k) ~ _ . 
p- (p -1)exp(=J=7rk) 

(6.21) 

This relation is valid only approximately, since we broke offtheinfinite sum in (6.20) 
at p = N because of the limited size of the image. 

Consecutive filtering with a left and right running filter corresponds to a multipli
cation of the transfer function 

.A (k) - + .A (k) - .A (k) ~ 1 
x - x x ~1+2p(p-1)(1-cos(7rk))" 

(6.22) 

The transfer function shows the characteristics expected for a lowpass filter (figure 6.8). 
At k = 0, Ax(k) = 1; for small k, the transfer function falls offproportional to k2: 

Ax ~ 1- p(p -1)(1rk)2 Je~ 1, 

and has a cut-off wave number kc (Ax(k) = 1/2) of 

-1 [ 1] 1 1 kc = - arccos 1 - Zp(p-l) ~ -/: 
1r 1r p(p- 1) 

At the highest wave number, k = 1, the transfer function has dropped off to 

' 1 
Ax(1) ~ 1 + 4p(p- 1). 

(6.23) 

(6.24) 

(6.25) 
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Figure 6.9: Transfer functions of two-dimensional recursive low-pass filters: a) A with p = 2; b) A' 
with p= 4. 

lt is not exactly zero as for binomial filters , but suffi.ciently small even for small values 
of p (figure 6.8). 

Two-dimensional filters can be composed from one-dimensional filters running in 
the horizontal and vertical directions: 

(6.26) 

This filter (figure 6.9) is considerably less isotropic than binomial filters (figure 6.5) . 
The anisotropy of the recursive filter is also visible in figures 6.10 and 6.6f. However, 
recursive filters show the big advantage that the computational effort does not depend 
on the cut-off wave numbers. With the simple first-order recursive filter, we can adjust a 
wide range of cut-off wave numbers with an appropriate choice of the filter parameter p 
(6.24). The isotropy of recursive filters can be further improved by running additional 
filters along the diagonals: · 

(6.27) 
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Figure 6.10: Test of the smoothing with the recursive lowpass filter A, p = 2 and p = 32. 

The subscripts x - y and x + y denote the main and second diagonal, respectively. The 
transfer function of such a filter is shown in figure 6.9b. 

Finally, here are a few considerations on computational efficiency. In contrast to 
non-recursive filters, the computational effort does not depend on the cut-off wave 
number. If p = 21 in (6.19), the filter can be computed without any multiplication: 

(6.28) 

The two-dimensional filter A then needs only 8 additions and shift operations per 
pixel, while the A' filter, running in four directions, needs twice as many operations. 
An example program is given in algorithm 2. 

6.1.4 Median Filter 

Linear filters effectively suppress Gaussian noise but perform very poorly in case of 
binary noise (figure 6.7). Using linear filters which weigh and sum up, we assume that 
each pixel carries some useful information. Pixels which are distorted by transmission 
errors have lost their original gray value. Linear smoothing does not eliminate this 
information but carries it on to neighboring pixels. Thus the only right operation to 
process such distortions is to detect these pixels and to eliminate them. 
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Algorithm 2: C subroutine to perform the one-dimensional noncausal recursive lowpass filtering in an 
arbitrary direction over one line in an image. 

I• 
** Recursive noncausal lovpass filter for an image of type short 
** m1[i]=112**1((2**1-1)m1[i-inc]+m1[i]), running cnt times forwards and backwards 
•I 
void ms1lowp(ptr,len,inc,cnt,l) short *ptr; short len, inc, cnt, 1; { 

unsigned int i; 
int s1; 
short •m1p; 

while (cnt--) { 
I• 
** torward direction 
•I 

I• 

m1p=ptr; 
s1 = •m1p; I* m1[0] > s1 •I 
for (i = len; i > 0; i--) { 

} 

s1 = ((s1<<1)-s1 + *m1p)>>l; 
*m1p = s1; 
m1p += inc; 

** backward direction 
•I 

} 
} 

m1p -= inc; 
s1 = 0; I• m1[n-1] > s1 •I 
for (i = len; i > 0; i--) { 

} 

s1 = ((s1<<1)-s1 + •m1p)>>l; 
*m1p = s1; 
m1p -= inc; 

This is exactly what a rank value filter does (section 5.1.3). The pixels within the 
mask are sorted and one pixel is selected. In particular, the median filter selects the 
medium value. Since binary noise completely changes the gray value, it is very unlikely 
that it will show the medium gray value in the neighborhood. In this way, the medium 
gray value of the neighborhood is used to restore the gray value of the distorted pixel. 

The following examples illustrate the effect of a 1 X 3 median filter M: . 

M(···123789···] 123789 ... l 
M[··· 1 2 102 4 5 6 ... 124556 ... l 
M[···000999···] 000999 ... l 

As expected, the median filter eliminates runaways. The two other gray value structures 
- a monotonously increasing ramp and an edge between two plateaus of constant gray 
values - are preserved. In this way a median filter effectively eliminates binary noise 
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without significantly blurring the image (figure 6.7b and f). Gaussian noise is less 
effectively eliminated (figure 6.7a and e). 

The more important deterministic properties of a one-dimensional 2N + 1 median 
filter can be formulated using the following definitions. 
• A constant neighborhood is an area with N + 1 equal gray values. 
• An edge is a monotonously in- or decreasing area between two constant neighbor

hoods. 
• An impulse is an area of at most N points surrounded by constant neighborhoods 

with the same gray value. 
• A root or fix point is a signal which is preserved under the median filter operation. 

With these definitions, the deterministic properties of a median filter can be de
scribed very compactly: 
• Constant neighborhoods and edges are fix points. 
• Impulses are eliminated. 
Iterative filtering of an image with a median filter results in an image containing only 
constant neighborhoods and edges. If only single pixels are distorted, a 3 x 3 median 
filter is sufficient to eliminate them. If clusters of distorted pixels occur, larger median 
filters must be used. 

The statistical properties of the median filter can be illustrated with an image 
containing only constant neighborhoods, edges and impulses. The power spectrum 
of impulses is flat ( white noise). Since the median filter eliminates impulses, the power 
spectrum decreases homogeneously. The contribution of the edges to a certain wave 
number is not removed. This example also underlines the non-linear nature of the 
median filter. A detailed description of the deterministic and statistic properties of 
median filters can be found in Huang (1981] and Arce [1986]. 
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second-order derivative 

first..order derivative 

Figure 6.11: Noisy one-dimensional edge and its first and second derivative. 

6.2 Edge Detection 

Smoothing filters suppress structures with high wave numbers. If we want to detect 

edges, a filter operation is necessary which emphasizes the chang~s in gray values and 

suppresses areas with constant gray values. Figure 6.11 illustrates that derivative oper

ators are suitable for such an operation. The first derivative shows an extremum at the 

edge, while the second derivative crosses zero where the edge has its steepest ascent. 

Both criteria can be used to detect edges. 
A nth-order derivative operator corresponds to multiplication by (ik )n in the wave 

number space (appendix A.2). In two dimensions, derivative operators are represented 

by a 
axl 
a 

ax2 
ß2 ß2 

.A=a2+-a2 xl x2 

~ 

(6.29) 

-(k~ + kD 

in the space and wave number domain. The sum of the two second partial derivatives 

is called the Laplace operator and is denoted by .A. 
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6.2.1 First-Order Derivative Operators 

On a discrete grid, a derivative operator can only be approximated. In case of the first 
partial derivative in the x-direction, one of the following approximations may be used: 

of(xl,x2) 
:::::: 

J(x1,x2)- f(xl- ßx1,x2) 
Backward difference 

oxl ßx1 

:::::: 
f(xl + ßx1, x2)- f(xb x2) 

ßx1 
Forward difference (6.30) 

:::::: 
f(xi + ßx1, x2)- f(xl- ßx1, x2) 

2ßx1 
Symmetrie difference. 

These approximations correspond to the filter masks 

-nx [1. -1] 

[1 - 1.] (6.31) 

8 Dx 1/2[10-1]. 

The subscript • derrotes the central pixel of the asymmetric masks with two elements. 
We should keep in mind that these masks need to be inverted when the convolution is 
performed (compare (5.1) in section 5.1.1). Only the last mask shows a symmetry; it 
is odd. We may also consider the two-element mask as an odd mask provided that the 
result is not stored at the position of the right or left pixel but at a position halfway 
between the two pixels. This corresponds to a shift of the grid by half a pixel distance. 
The transfer function for the backward difference is then 

(6.32) 

where the first term results from the shift by half a grid point. Using (5.46), the transfer 
function of the symmetric difference operator reduces to 

(6.33) 

At high wave numbers, both operators show considerable deviations from the ideal 
transfer function of a derivative operator, -i1rk.,. For wave numbers k., > 1/2, the 
symmetric difference operator works even like a lowpass filter. Indeed, we canthink of 
this operator as a combination of a smoothing and a difference operator: 

In two dimensions, edge detection is more complex. One-dimensional difference 
operators such as 
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Figure 6.12: Imaginary part of the transfer function of derivative operators. a) 1-D transfer function 
of -v., and 'V.,; b) 2-D transfer function of •v.,. 

Figure 6.13: Test of the first-order derivative operators V., and Vy with the test image shown in 
figure 6.4. 
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Figure 6.14: Detection of edges with derivative operators shown at image figure 6.6a: a) horizontal 
derivative •v",; b) vertical derivative ''Dy; c) magnitude-of-gradient I'VI; d) sum-of-magnitudes (6.36); 
e) Laplace operator 1:.; f) signum of the Laplace operator. 
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predominantly detect edges which lie perpendicular to the direction of the operator 
(figure 6.14a and b ). However, we are seeking a filter operator which detects edges 
independent of their orientation, i. e., an isotropic edge detector. From the two spatial 
derivatives, we can form a vector operator, the gradient operator 

(6.34) 

The magnitude of the gradient operator is invariant under a rotation of the coordinate 
system. The computation of the magnitude of the gradient can be expressed by the 
operator equation 

(6.35) 

Some comments on the notation of this operator equation follow. The symbol · denotes 
a point-wise multiplication of the image matrices which result from the filtering with 
the operators Vx and Vy, respectively. This is a nonlinear point operation which must 
not be commuted with linear convolution Operators. The operator V· V must be 
distinguished from VV = V 2 • The latter means the twofold application of V on the 
operant. Likewise the square root in (6.35) is performed point-wise in the space domain. 
To get used to this helpful and brief notation we explicitly express the meaning of the 
operation IVIG: 

1. filter the image independently with Dx and Dy, 
2. square the gray values of the two resulting images, 
3. add them, and 
4. compute the square root of the sum. 

In the course of this book, we willlearn about many operators which contain a mix
ture of linear convolution operators and point operations in the space domain. Point
wise multiplication is denoted by · to distinguish it from consecutive application of two 
linear operators. All other point operations, as addition, division, or any other point 
operation P(), can be denoted unambiguously in standard notations. 

The magnitude-of-gradient operator lVI isanother example of a nonlinear operator. 
It has the disadvantage that it is computationally expensive. Therefore it is often 
approximated by 

(6.36) 

However, this operator is anisotropic even for small wave numbers. It detects edges 
along the diagonals more sensitively than along the principal axes. 

6.2.2 Laplace Filter 

With second derivatives, we can easily form an isotropic linear operator, the Laplace 
operator. We can directly derive second-order derivative operators by a twofold appli
cation of first-order operators 

D~ = -nx +nx. (6.37) 

This means in the spatial domain 

[1 -21]=[1. -1]*[1 -1.]. (6.38) 
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Figure 6.15: Transfer functions of discrete Laplace operators: a) L (6.39) ; b) t' (6.43). 

The discrete Laplace operator .C = v;, + D~ has the filter mask 

L ~ [ I -2 I ] + [ -~ l ~ [ ! -t ! l (6.39) 

and the transfer function 

(6.40) 

As in other discrete approximations of operators, the Laplace operator is only isotropic 
for small wave numbers (figure 6.15a) : 

(6.41) 
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There are many other ways to construct a discrete approximation for the Laplace 
operator. An interesting possibility is the use of binomial masks. With (6.15) we can 
approximate all binomial masks for sufficiently small wave numbers by 

(6.42) 

From this equation we can conclude that any Operator I- sn constitutes a Laplace 
operator for small wave numbers. For example, 

2 1 l -12 2 
2 1 

(6.43) 

with the transfer function 

., - - 1 - - 1 - -
L = cos(1rk") + cos(dy) + 2 cos[1r(k"- ky)] + 2 cos[1r(k" + ky)]- 3, (6.44) 

which can be approximated for small wave numbers by 

(6.45) 

For large wave numbers, the transfer functions of both Laplace operators show con
siderable deviations from an ideal Laplacian, -(1rk)2 (figure 6.15) . .C' is slightly less 
anisotropic than .C. 

6.3 Filter Design 

So far in this chapter, we have discussed the elementary properties of smoothing and 
edge detecting filters. In this last section we will add some details. In the examples 
discussed so far we were confronted with the recurring questions: how can we find 
a filter which performs the given task a) as correctly as possible and b) in the most 
efficient way. These are the central questions of a special discipline called filter design. 
As we noted already in section 6.1.3, filter design has been well established for one
dimensional signals, i. e., time series. Excellent text books available for this topic, for 
example, Oppenheim and Schafer [1989]. However, multidimensional filter design is 
much less established. We do not want to follow the classical avenues here. Rather 
we will continue with the approach to combine more complex filter operations from 
the elementary operators which we have found useful so far. This approach also shows 
the advantage that we obtain effective implementations of the filters. Emphasis in this 
section will also be on more accurate derivative filters, since these filters determine the 
accuracy of more complex image processing operations such as the determination of local 
orientation ( chapter 7) and the estimation of motion in image sequences ( chapter 17). 
Examples of effective implementations will also be discussed. 
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Figure 6.16: Test of the Laplace and signum of the Laplace operators. 
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Figure 6.17: Elementary circuits to perform discrete filter operations. 
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Figure 6.18: Different circuit nets to perform the binomial smoothing filter operation B 4 = 
1/16 [1 4 6 4 1]: a) direct implementation; b) saving multiplications; c) composition with the ele
mentary filter B = 1/2 [1 1]; d) computation for the next pixels. 

6.3.1 Filter Nets 

The filters we have discussed so far are built from the simplest elementary operations 
we can think of: scaling of pixels and the addition of neighboring pixels. For each of 
these operations we can construct a circuit element which performs the corresponding 
operation. Figure 6.17 shows a scaler, an adder, a subtractor, a multiplier, and a 
shift-register stage. The circuit elements perform the operation either analogously or 
digitally. 

With these circuit elements, we can view FIR filters in an instructive way. As a 
first example, we consider the one-dimensional binomial mask B 4 = 1/16 [1 4 6 4 1]. 
Figure 6.18 shows different implementations to compute the filter output for one pixel. 
While direct implementations result in irregular-shaped circuit nets, the composition 
of the filter with the B = 1/2 [1 1] mask gives a regular mesh of operations. For the 
calculation of a single output pixel, we need 10 additions, more than for the direct 
implementation. To calculate the filter output of the next pixel, we only need four 
additions if we store the intermediate results on each level of the filter net from the 
computations of the previous pixel (figure 6.18d). 

Actually, we could build a net of these circuits, spanning the whole vector to compute 
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Figure 6.19: Circuit net to compute the several convolution operations in parallel: a) binomial smooth
ing filter B!; b) symmetric first-order derivative 'V.,; c) second-order derivative v;. 

the binomial smoothing in parallel (figure 6.19). Such a net has a number of interesting 
properties. Each level of the net corresponds to a filtering of the image with the 
elementary smoothing mask 1/2 [1 1]. Thus not only do we yield the final result, but 
allintermediate smoothing results. The grid points of the individuallayers change from 
regular grid points to intermediate grid points in a natural way. With such filter nets 
we can also easily build derivative operators. For the first-order derivative operator, 
we need one layer with adders and one layer with subtracters (figure 6.19b ), for the 
second-order derivative, we need two layers with subtracters (figure 6.19c). 

The filter-net model also allows a Straightforward approach to the boundary prob
lems of filtering. We could close the net into a ring. This corresponds to a cyclic 
convolution. Or we could extend the net beyond the edges of the vector, so that we get 
all knots to calculate the first and last point. Then we can fill the grid points in the 
lowest levels which lie outside the vector either with zeros or we can extrapolate them 
in an appropriate manner from the points within the vector. 
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Algorithm 3: C subroutine to perform the one-dimensional binomial filtering with B = 1/4 (1 2 1] of 
a vector. 

I• 
** Binomial filter of second order: 114 [1 2 1] 
•I 
void vs1bin2(v1) SVEC •v1; { 

register unsigned int i; 
register int s1, s2; 
register short •v1s, •v1d; 

** first loop from left to right 
•I 

I• 

v1s = v1d = v1->dat; 
s1 = •v1s++; I• v1[0] > s1 •I 
for (i = v1->dx-1; i > 0; i--) { 

} 

s2 = •v1s++; 
•v1d++ = (s2+s1)>>1; I• v[i]=(v[i+1]+v[i])l2 •I 
s1 = s2; I• v[i] > v[i-1] •I 

** second loop from right to left 

} 

v1s = v1d = v1->dat + v1->dx; 
s1 = --•v1s 
for (i = v1->dx-1; i > 0; i--) { 

s2 = --•v1s; 

} 

--•v1d = (s2+s1)>>1; I• v[i]=(v[i-1]+v[i])l2 •I 
s1 = s2; I• v[i-1] > v[i] •I 

The extension of filter nets to two dimensions is straightforward for separable filters. 
The nets are then composed of nets alternately connecting the pixels in the horizontal 
or vertical direction. Generally, each such directional net contains two layers so that 
the filter results remain positioned on the original grid. 

The filter nets are valuable tools for algorithm design. As we have seen, they are 
especially useful to make efficient use of intermediate results and to get a clear idea 
of the boundary problems at the edges of images. As an example, we discuss two 
different implementations of binomial filters. Algorithm 3 computes only one level per 
loop. First it runs forward, storing the result of the addition in the left pixel and then 
it runs backwards storing the result in the right pixel. For each level one addition, 
one shift operation, one memory read, and one memory write operation are necessary. 
In contrast, algorithm 4 computes four levels at once. Though the algorithm is more 
complex, the advantages are obvious. To compute four levels, we need four additions, 
but only one memory read and one memory write Operation. The other memory read 
and write Operations are replaced by faster register transfer operations. Only one shift 
operation is performed before we store the final result in the memory. This approach 
also leads to less rounding errors. 
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Algorithm 4: C subroutine to perform the one-dimensional binomial filtering with B = 1/16 [1 4 6 4 1] 
in an arbitrary direction over the image. 

I• 
** Filtering of a line in an image starting at ptr vith len pixels in an 
•• aritrary direction (determined by inc) by a 1116(1 4 6 4 1) binomial filter. 
** The filter is applied cnt times. If ZERO is defined, points outside the image 
** are assumed to be zeros; othervise they get the gray value of the edge pixels 
•I 
void ms1bin4(ptr,len,inc,cnt) short *ptr; short len,inc,cnt; { 

register long acc, sO, s1, s2, s3, s4, rinc=inc; 
register short •m1p; 
unsigned short i,j; 
for (j=cnt; j > 0; j--) { 
I• Preparation of the convolution loop •I 

#ifndef 

m1p=ptr; 
sO (long)•m1p; 
s1 = (long)•m1p; 
s2 = sO + s1; 
ZERO 

m1p += rinc; 
m1p += rinc; 

I• sO 
I• s1 
I• s2 

m1 [0] •I 
m1 [1] •I 
ml[O] +m1[1] •I 

sO <<= 1• . I• extrapolate vith edge pixel •I 
#endif 

s3 = sO + s2; I• s3 = 2l3•m1[0]+m1[1] •I 
#ifndef ZERO 

sO <<= 1• . I• extrapolate vith edge pixel •I 
#endif 

s4 = sO + s3; I• s4 = 3l7•m1[0]+m1[1] 
I• Convolution loop for pixels 0 bis len-3 •I 

for (i = len-2; i > 0; i--) { 

acc = (long)•m1p; I• m1[i+2] •I 
sO acc; acc += s1; s1 sO; I• level 1 •I 
sO acc; acc += s2; s2 sO; I• level 2 •I 
sO acc; acc += s3; s3 sO; I• level 3 •I 
sO acc; acc += s4; s4 sO; I• level 4 •I 
•(m1p-(rinc«1)) = (short)(acc>>4); m1p += rinc; 

} 

I• Second last pixel ml[len-2] •I 
m1p -= rinc; I• point to ml[len-1] •I 

#ifdef ZERO 
acc o· . 

#else 
acc (long)*mlp; 

#endif 
sO acc; acc += sl; s1 sO; 
sO acc; acc += s2; s2 sO; 
sO acc; acc += s3; s3 sO; 
sO acc; acc += s4; s4 sO; 
•(m1p-rinc) = (short)(acc>>4); 

I• Last pixel ml[len-1] •I 
#ifdef ZERO 

acc 0; 
#else 

acc (long)•m1p; 
#endif 

•I 

acc += s1; acc += s2; acc += s3; acc += s4; •m1p (short)(acc»4); 
} 

} 
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6.3.2 Filter Decomposition 

In the filter nets we discussed so far, it was possible to build up more complex filters 
such as larger binomial smoothing masks and derivative operators just by applying 
elementary filter masks which repeatedly combine neighboring pixels. Now we turn 
to the important question whether it is possible to decompose every convolution mask 
in a cascade of convolution operations with such elementary masks. The existence 
of such a decomposition would have far-reaching consequences. First, we could build 
simple filter nets for any type of convolution operations. Second, many modern image 
processing systems include high-performance hardware to perform convolutions with 
small convolution kernels (typically 4 X 4 or 8 X 8, see appendix B) very efficiently. If 
we can decompose any filter mask in a set of small filter masks, we can also make 
use of this hardware for large kernels. Third, the decomposition often reduces the 
computation, as we have already demonstrated with the binomial filter kernels. 

Simonds [1988] proved that each two-dimensional filter kernel could be built up with 
the basic kernels 

1E., = [ 1 0 1 j 

(6.46) 

and the identity mask I= [1]. 
Simonds' decomposition is based on symmetry. First he shows that every convolu

tion mask H can be decomposed into four kernels with show the following symmetry 
properties: 

1. horizontally and vertically even ("" H), 
2. horizontally even and vertically odd (0 " H), 
3. horizontally odd and vertically even ("0 H), and 
4. both directions odd (00 H), 

ee Hm,n (Hm,n + Hm,-n + H-m,n + H-m,-n)/4 

oeHm,n (Hm,n + Hm,-n- H-m,n- H-m,-n)/4 

(Hm,n- Hm,-n + H-m,n- H-m,-n)/4 

(Hm,n- Hm,-n- H-m,n + H-m,-n)/4. 

(6.4 7) 

It is easy to prove this lemma by adding the lines in (6.47). Next, we conclude that 
the four elementary masks in (6.46) and the four combinations of the horizontal and 
vertical masks just show these symmetry properties. Together with the identity mask I, 
we have 9 independent masks, i. e., just as many independent elements as in a general 
3 X 3 mask. Consequently, we can compose any 3 x 3 mask with these nine masks. 
For a general mask which does not show symmetry properties, this decomposition is 
computationally ineffective since it requires 9 more additions then a direct computation. 
However, since all useful image processing filters show certain symmetry properties, only 
a partial set of the elementary masks is needed. 
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Such a decomposition is especially useful if a set of similar masks has to be calcu-
lated. As an example, we take the generalized Sobel operators 

s.~~r: 
0 

-1 l s,~~r: -1 
-2] 0 -2 0 -1 

8 1 0 -1 8 2 1 0 

1 [ I 
2 j] 1 [ 2 

1 -q, (6.48) 

s2 = 8 o 0 s4 = 8 ~ 0 
-1 -2 -1 -2 

which are sometimes used as simple operators to detect edges in the direction of the 
two axes and diagonals. Simultaneously, they perform some smoothing perpendicular 
to the direction of the edge. 

These operators can be computed as follows: 

eos (1 + 1Ey)1 0x 

oes (1 + lEx)lOy 

sl 1/8(10x + eo S) 

s2 1/8eoy + oes) 
(6.49) 

s3 1/8(•os- o•s) 

s4 1/8(eo S + oe S). 

In total, we need only 12 additions and 4 shift operations to calculate the four 3 x 3 
Sobel operators. 

In order to decompose larger kernels, we need additional masks of the length 2k + 1 

kE=(10 ··· 01], k0=(10 ··· 0 -1]. (6.50) 

These masks can be computed iteratively from the masks of size one, 1 E and 10 

kE 
{ 1Ek-1E _ k-2E, k>2 

1E 1E- 2, k=2 

ko 
{ 1 Ek-10 _ k-20 , k>2 

= 1E10, k = 2. 

(6.51) 

6.3.3 Smoothing Operators 

In this section we discuss the filter design of smoothing filters. In contrast to classical 
approaches in filter design, we will try to develop filters with the desired characteristics 
from the elementary E operator. We willlearn two design principles which will guide 
our search for composite filters. 

The binomial smoothing filters En discussed in section 6.1.2 optimally balance wave 
number resolution and kernel size. Common to all of them is the rather gradual decrease 
of the transfer function with the wave number (figure 6.1b). For small wave numbers, 
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all binomial filters decrease with k2 (6.12). This property is the basic reason for the 
rather gradual decrease of the transfer function. A smoothing filter that decreases with 
a higher power in k should first maintain a flat response. At the cut-off wave number, it 
should fall-off steeply towards zero. We can construct such filters by observing that the 
Operator I - sn goes with k2 • If we apply this operator several times and subtract it 
from the original image, we obtain a smoothing operator which decreases with a higher 
power in k. The siruplest operator of this type is 

(6.52) 

The corresponding filter coefficients are 

<2•1> B = _..!._ [-1 4 10 4 - 1] 
X 16 (6.53) 

in one dimension and 

-1 -4 -6 -4 -1 

(2,1)B = _1_ 
-4 16 40 16 -4 
-6 40 92 40 -6 

256 -4 16 40 16 -4 
(6.54) 

-1 -4 -6 -4 -1 

in two dimensions. In this way, we can define an entire new dass of smoothing filters: 

(6.55) 

with the transfer function 

(6.56) 

We derrote the order, i. e., the steepness of the transition, with n, while l controls the 
cut-off wave number of the filter. A Taylor expansion yields for small k.,, ky 

(n,l) iJ ~ 1 - 2~n ( 7rk) 2n . (6.57) 

Figure 6.20 shows transfer functions for a number of filters of this type. The higher the 
order of the filter, the more the cut-off wave number is shifted to higher wave numbers. 
The minimum mask length increases proportionally with the order of the filter. The 
smallest smoothing mask of second order has five coefficients, the smallest filter of third 
order 

(6.58) 

has seven coefficients in one dimension: 

<3•1> B., = 6
1
4 [1 - 6 15 44 15 - 6 1]. (6.59) 

This dass of filters shares many important properties of the binomial filters Bn: 
• The transfer function decreases monotonically and vanishes at k., = 1 and ky = 1. 
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Figure 6.20: Transfer functions of one-dimensional smoothing filters ofhigher order according to (6.56): 
a) smallest masks of ordern (I= 1); b) second-order filters with I as indicated. 

• Since the filter is composed of ( approximately) isotropic filters, the resulting filters 
arealso isotropic (figure 6.21a and b). This is an important design issue in two di
mensions. We cannot construct a higher-order smoothing filter from one-dimensional 
higher-order filters in a simple way. These filters tend to show square-like contour 
lines in the transfer function (figure 6.21c). 

With these examples, we have learnt some advantages of the composition method for 
filter design: 
• The filter coefficients and transfer functions can be expressed in analytical formulas. 

This allows us to analyze the properties of the filters directly. 
• The design method coincides with an effective implementation. 
• As demonstrated, we can incorporate such features as isotropy and behavior at low 

wave numbers into the composition rules. 
Despite the very efficient implementation of the binomial smoothing filter Bn, the 

computation required increases dramatically for smoothing masks with low cut-off wave 
numbers, because the standard deviation of the filters only coordinates with the square 
root of n according to (4.8): (}" = fo/2. Let us consider a smoothing operation over 
a distance of only 5 pixels, i. e., (}" = 5. Then we need to apply 8 100 which requires 
200 additions for each pixel even with the most effective implementation. The linear 
dimensions of the mask size increase with the square of the standard deviation (}" as 
does the computation required. 

The problern originates in the small distance of the pixels averaged in the elementary 
B = 1/2 [1 1] mask. The repetitive application of this mask is known as a diffusion 
process for gray values. The half width of the distribution is only proportional to the 
square root of the time, i. e., the number of iteration steps (see (16.25) in section 16.3.3). 
In order to overcome this problem, we may use the same elementary averaging process 
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Figure 6.21: Transfer functions oftwo-dimensional smoothing filters of higher-order smoothing filters 
according to (6.56): a) <2•4) iJ; b) separable second-order filter <2 •4) iJ.,<2•4 ) By. 

but with more distant pixels, for example 

Bx-y = [ ~ ~ ] Bx+y = [ ~ ~ ] 
B2x = [1 0 1] B2y = Ul 

[ ~ 0 ~ ] [Hl (6.60) 

Bx-2y = 
0 

B2x-y = 

B2x+y [ ~ 0 ~ ] Bx+2y [~ n = 
0 

= 

The subscripts in these elementary masks denote the distance and direction of the pixels 
which are averaged. The subscript can be read as the equation for the line connecting 
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the two pixels. Bx-y (plane equation x - y = 0) averages two neighbored pixels in 
the direction of the main diagonal. Bx-2y averages a pixel and its neighbor which is 
located two grid constants to the right and one to the top. The standard deviation of 
these filters is proportional to the distance of the pixels. 

The problern with these filters is that they perform a subsampling. Consequently, 
they are no Ionger a good smoothing filter for larger wave numbers. If we take, for 
example, the symmetric 2-D 8~x8~Y filter, we effectively work on a grid which is twice 
as large in the spatial domain. Hence, the reciprocal grid in the wave number is half 
the size, and we see the periodic replication of the transfer function (figure 6.22b, 
see also the discussion in section 2.3.3). The zero lines of the transfer function show 
the reciprocal grid for the corresponding subsample grids. For convolution with two 
neighboring pixels in the direction of the two diagonals, the reciprocal grid is turned 
by 45°. The grid constant of the reciprocal grid is V2 smaller than that of the original 
grid. 

Used individually, these filtersarenot of much help. But we can use them in cascade, 
starting with directly neighboring pixels. Then the zero lines of the transfer functions, 
which lie differently for each pixel distance, efficiently force the transfer function close 
to zero for large wave numbers. In the filter combination 8;8;8;_Y8;+Y the non-zero 
high parts in the corners of B;_YB;+Y are nearly vanished since the transfer function 
8;8; filter is close to zero in this part (figure 6.22a, b, and e). As a final example, we 
consider the filter 

8 26' 828282 82 82 82 82 82 - x y x-y x+y 2x-y 2x+y x-2y x+2y• (6.61) 

Its standard deviation is J6.5 ~ 2.5, i. e., it corresponds to the 8 26 operator. The 
transfer function is shown in figure 6.22f. With only 16 additions and one shift operation 
we can convolve the image with the 19 x 19 kernel 

* 

* [ ~ 

0 0 0 
0 2 0 
0 0 0 

0 0 
0 2 
0 0 

~ ~H~ 
1 0 0 
0 0 0 
0 2 0 
0 0 0 
0 0 1 
0 0 1 
0 0 0 
0 2 0 
0 0 0 
1 0 0 

Hl 
(6.62) 
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Figure 6.22: Transfer functions ofthe elementary binomial filter 8 2 used to average pixels with different 
distances shown as contour plots. The thick lines show the zeros of the transfer function. a) B;B;; 
b) B~"B~y; c) B;_yB;+y; d) B~"-yB~"+yB;_2yB;+2y; e) B;B;B;_yB;+Y; f) 8 26', see (6.61). 



6.3 Filter Design 153 

Figure 6.23: Convolution mask of the 8 261 binomial smoothing operator (6.61}. 

0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 6 8 8 8 6 2 0 0 0 0 0 0 
0 0 0 0 1 6 14 24 34 38 34 24 14 6 1 0 0 0 0 
0 0 0 2 8 24 50 78 102 112 102 78 50 24 8 2 0 0 0 
0 0 1 8 30 68 124 190 241 260 241 190 124 68 30 8 0 0 
0 0 6 24 68 146 254 372 464 500 464 372 254 146 68 24 6 0 0 
0 2 14 50 124 254 430 612 756 812 756 612 430 254 124 50 14 2 0 
0 6 24 78 190 372 612 866 1062 1132 1062 866 612 372 190 78 24 6 0 

1 1 8 34 102 241 464 756 1062 1294 1380 1294 1062 756 464 241 102 34 8 1 

= 2 8 38 112 260 500 812 1132 1380 1480 1380 1132 812 500 260 112 38 8 2 
216 1 8 34 102 241 464 756 1062 1294 1380 1294 1062 756 464 241 102 34 8 1 

0 6 24 78 190 372 612 866 1062 1132 1062 866 612 372 190 78 24 6 0 
0 2 14 50 124 254 430 612 756 812 756 612 430 254 124 50 14 2 0 
0 0 6 24 68 146 254 372 464 500 464 372 254 146 68 24 6 0 0 
0 0 1 8 30 68 124 190 241 260 241 190 124 68 30 8 0 0 
0 0 0 2 8 24 50 78 102 112 102 78 50 24 8 2 0 0 0 
0 0 0 0 1 6 14 24 34 38 34 24 14 6 1 0 0 0 0 
0 0 0 0 0 0 2 6 8 8 8 6 2 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 

This kernel is also shown in figure 6.23. It would take 52 additions with the equivalent 
8 26 operator. Straightforward convolution with the 27 x 27 mask of 8 26 would take 
729 multiplications and 728 additions. Agairr this example illustrates that good kernel 
design and extremely high efficiency go hand in hand with the composition method. 

6.3.4 Bandpass Filters; DoG and LoG Filter 

Bandpass filters select a range of wave numbers. Again, it is possible to construct them 
from simple binomial smoothing masks. To do so, we take two smoothing filters with 
different cut-off wave numbers. When we subtract the results of these two operations, 
we obtain an image which contains the range of wave numbers between the two cut-off 
wave numbers. A simple one-dimensional example is 

P1 = 4(Bi - Bt) 
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with the convolution mask 

p1 = [ 1 2 1 ]- ~ [ 1 4 6 4 1 l = ~ [ -1 0 2 0 -1 l 
and the transfer function 

• 2 ( k-) 1-cos(27rk) 
p1 = 1 - cos 11" = 2 . 

The transfer function shows a maximum at k = 1/2 and is zero at k = 0 and k = 1. With 
similar combinations of other binomial operators, we can construct bandpass operators 
with different a bandwidth and different a bandpass wave number. In a similar manner 
we can also construct isotropic two-dimensional bandpass filters. 

Since the discrete binomial operators converge rapidly against the Gaussian function 
{section 4.2.1 ), we can use them to describe some general features for larger kernels. 
The continuous convolution mask 

{6.63) 

has the transfer function 
{6.64) 

Thus the difference filter, which is abbreviated to DoG (Difference of Gaussian) yields 
the transfer function 

For small wave numbers, the transfer function is proportional to lkl 2 

D-G ~ k2(<7~- a'i) 
0 ~ 2 . 

{6.65) 

(6.66) 

The decrease towards high wave numbers is determined by the first exponential in 
(6.65). The wave number for the maximum response, kmax = lkrnaxl, is given by 

2 <72 
krnax = 2 2 ln-. 

0"2 - 0"1 <71 
(6.67) 

Since DoG filters increase quadratically for small wave numbers, they behave like a 
Laplace operator in this region. Consequently, they are similar to an operator which 
first smooths the image with a Gauss operator and then applies the Laplace operator. 
Such a filter is called a Laplace of Gaussian, or LoG for short. A LoG filter has the 
transfer function 

(6.68) 

LoG and DoG filter operations are believed to have significant importance in low
level image processing in the human visual system [Marr, 1982]. Methods for fast 
computation of these filter operations have been discussed by Chen et al. [1987] and 
Crowley and Stern [1984]. 
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6.3.5 Derivative Operators 

We have already discussed discrete derivative operators in section 6.2 with respect to 
edge detection. Now we focus on the question of the accuracy of these operators. So 
far we have only used very crude approximations of the derivatives (6.30) which show 
considerable deviations from an ideal derivation operator (6.33) even for small wave 
numbers: -36% for k = 1/2, -10% for k = 1/4 and only -2,6% for k = 1/8. These 
deviations are too large to be tolerated for a number of complex filter operations which 
we will discuss in section 7.3 and chapter 17. Therefore, we now review improved 
approximations of derivative operators in this section. 

We start with the fact that any derivative operator of odd or even order has a filter 
kernel with the corresponding symmetry. In the following we restriet our considerations 
to the first-order derivative operator. Generally, it has the mask 

(RJn = 1/2 [dn (6.69) 

and the transfer function 
R 

(r)iJ = i:Ld"sin(u1rk). (6.70) 
u=l 

For a given filter length R, we now have to choose a set of coefficients, so that the 
sum in (6.70) approximates the ideal derivative operator i1rk in an optimum way. We 
can do this by expanding the sine function in u1rk and then choose the coefficients d" 
so that as many terms as possible vanish except for terms linear in k. Before we write 
the general mathematical formalism, we consider the simple example with R = 2. If we 
expand the transfer function in (6.70) to the third order in k, we obtain 

or 

(2)DX d11rk 
+ 2d2 1rk 

dtf6(1rk)3 

8d2/6(7rk)3 

(2) Dx = (dl + 2d2)1rk- 1/6(dl + 8d2)(1rk)3 • 

Since the factor of the k3 should vanish and the factor for the k term be equal to one, 
we have two equations with the two unknowns d1 and d2. The solution is d1 = 4/3 and 
d2 = -1/6. According to (6.69) we yield the filter mask 

(2)Dx= 1
1
2 [-180 -81]. 

Now we use the same principle to compute an optimum derivative operator with 
2r + 1 elements. We expand the sine function up to the order 2r + 1. Then we obtain 
r coefficients for the r powers in k and thus r equations for the r unknowns d". The 
general form of the linear equation system is 

1 
1 
1 

2 
8 

32 

3 
27 

243 

1 
0 
0 

0 

(6.71) 



156 

3.0 3.0 

Sb a) ZWb b) 

2.0 2.0 

1.0 1.0 

0.0 0.0 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 
k k 

Figure 6.24: Optimized derivative Operatorsfora given fi.lter length: a) with odd number of coefficients 
2R+ 1 according to (6.71); b) with even number of coefficients 2R. 

As examples of the solutions, we show the filter masks for R = 3 

and R = 4 

(3) D = ~ [1 -9 45 0 -45 9 -1] 
X 60 

(4lD = - 1- [-3 32 -168 672 0 -672 168 -32 3] 
X 840 • 

Figure 6.24 shows how the transfer function of these optimized kernels converges to 
the ideal derivative operator with increasing R. Convergence is slow, but the transfer 
function remains monotonous. No additional errors are introduced for small k. A filter 
of length 7 (R = 3) reduces the deviation for k = 1/2 to only -2.4% compared to 
-36% for the simple derivative operator with R = 1. 

The linear equation system ( 6. 71) can also be used to optirnize other odd-order 
derivative operators. We must only change the vector on the right side of ( 6. 71) ac
cordingly. A similar equation system can be used to optimize even-order derivative 
operators as well as first-order derivative operators with an even number of coefficients 
(see figure 6.24b ). The latter places the fi.lter results between the grid points. 



7 Local Grientation 

7.1 Introduction 

In the last chapter we became acquainted with neighborhood operations. In fact, we 
only studied very simple structures in a local neighborhood, namely the edges. We 
concentrated on the detection of edges, but we did not consider how to determine 
their orientation. Orientation is a significant property not only of edges but also of 
any pattern that shows a preferred direction. The local orientation of a pattern is the 
property which leads the way to a description of more complex image features. Local 
orientation is also a key feature in motion analysis ( chapter 17). Furthermore, there is 
a close relationship between orientation and projection (section 13.4.2). 

Our visual system can easily recognize objects which do not di:ffer from a background 
by the mean gray value but only by the orientation of a pattern as demonstrated in 
figure 7.1. To perform this recognition task with a digital image processing system, 
we need an operator which determines the orientation of the pattern. After such an 
operation, we can distinguish di:fferently oriented patterns in the same way we can 
distinguish gray values. 

For a closer mathematical description of local orientation, we use continuous gray 
value functions. With continuous functions, it is much easier to formulate the concept 
of local orientation. As long as the corresponding discrete image meets the sampling 
theorem, all the results derived from continuous functions remain valid, since the sam-

I 
Figure 7.1: Objects can not only be recognized because of differentes in gray values but also because 
of the orientation of pattems. 
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pled image is an exact representation of the continuous gray value function. A local 
neighborhood with ideallocal orientation is characterized by the fact that the gray value 
only changes in one direction, in the other direction it is constant. Since the curves 
of constant gray values are lines, local orientation is also denoted as linear symmetry 
[Bigün and Granlund, 1987]. If we orient the coordinate system along these two princi
pal directions, we can write the gray values as a one-dimensional function of only one 
coordinate. Generally, we will denote the direction of local orientation with a vector k 
which is perpendicular to the lines of constant gray values. Then we can write for a 
local neighborhood with an ideal local orientation: 

(7.1) 

We can easily verify that this representation is correct, since the gradient of the gray 
value structure 

og(zTft) 
OXt 

og(zTft) 
(7.2) 

OX2 

lies in the direction of k. (With g' we denote the derivative of g with respect to the 
scalar variable zTk.) From this coincidence we might conclude that we can easily 
determine local orientation with the gradient operator. We could use the magnitude of 
the gradient as an orientation-independent certainty measure 

[ 2 2]1/2 
IVgl = (::J + (::J (7.3) 

and determine the direction of the orientation by 

~ = arctan ( ::2 I ::J . (7.4) 

Unfortunately this simple approach does not Iead to an adequate orientation deter
mination because: 
• The gradient is a too local feature. Even if we have a random pattem, the gradient 

will give us weil defined orientations at each point. Consequently, an appropriate 
orientation operator must include some averaging in order to detect whether or not 
a local neighborhood shows local orientation. 

• The gradient does not deliver the correct angular range for orientation. To describe 
orientation, a range of 180° is sufficient, since the rotation of a pattern by 180° does 
not change its orientation. 

• It is not directly possible to average the orientation angle because of the 180° am
biguity and because the angle shows a discontinuity. For example, two structures 
with orientation angles of -89° and 87° lie in very similar directions despite the very 
different values of the angles. Direct averaging of the two orientations would yield 
the wrong mean value of -1 o. 
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a) b) c) 

Figure 7.2: Representation oflocal orientation as a vector: a) the orientation vector: b) averaging of 
orientation vectors from a region with homogeneaus orientation; c) same for a region with randomly 
distributed orientation. 

7.1.1 Vectorial Representation of Local Grientation 

The introduction made us think about an adequate representation of orientation. Such 
a representation needs to take into account the circular property of the orientation 
angle. Thus we are forced to represent orientation by an angle. Because its range 
is limited to 180°, we must double the angle. We then can think of orientation as a 
vector pointing in the direction 2</> (figure 7.2). The magnitude of the vector can be 
set to the certainty of the orientation determination. As a result any averaging means 
vector addition. In case of a region which shows a homogeneous orientation, the vectors 
line up to a large vector (figure 7.2c). However, in a region with randomly distributed 
orientation the resulting vector becomes very small, indicating that no significant local 
orientation is present (figure 7.2c). 

7.1.2 Color Coding of Vectorial Image Features 

We cannot display orientation adequately with a gray value image. We can either 
display the certainty or the orientation angle, but not both. The latter cannot be 
properly displayed at all, as we get a discontinuity in the representation with the jump 
from the smallest to the largest angle. However, both features can be displayed in a 
color image. It appears natural to code the certainty measure in the luminance and the 
orientation angle in color. Our attention is then drawn to the light parts of the image 
where we can determine the orientation angle with good accuracy. The darker a region 
becomes, the more difficult it will be for us to distinguish different colors visually. In 
this way, our visual impression coincides with the orientation contents in the image. 
Representing the orientation angle as a color means that it adapts well to its own cyclic 
behavior. There is no gap at a certain angle. Perpendicular orientations are shown in 
complementary colors (plate 8). 

In the following two sections, we will introduce two different concepts to determine 
local orientation. First, we discuss the use of a set of directional filters. The sec
ond method is based on the Fourier space and allows a direct determination of local 
orientation with simple derivative operators. 
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7.2 The Quadrature Filter Set Method 

In chapter 5 we learnt that we can use filter operations to select any wave nurober 
range which is contained in an image. In particular we could choose a filter that selects 
only wave numbers of a certain direction. In this way, we can extract those structures 
which are oriented in the same direction. Such an extraction, however, does not yield 
a determination of local orientation. We must use a whole set of directionally sensitive 
filters. We will then obtain a maximum filter response from the directional filter whose 
direction coincides best with that of local orientation. In order to determine local 
orientation we must apply a nurober of directional filters. Then we have to compare the 
filter results. If we get a clear maximum in one of the filters but only little response in 
the others, the local neighborhood contains a locally oriented pattern. If a large fraction 
of the filters gives a comparable response, the neighborhood contains a distribution of 
oriented patterns. So far, the concept seems to be straightforward, but a nurober of 
tricky problems needs to be solved. Which properties have to be met by the directional 
filters in order to ensure an exact determination of local orientation, if at all possible? 
For computational efficiency, we need to use a minimal nurober of filters to interpolate 
the angle of the local orientation. What is this minimum number? 

The concepts introduced in this section are based on the work of Granlund [1978], 
Knutsson [1982], and Knutsson et al. [1983]. 

7.2.1 Directional Quadrature Filters 

First we will discuss the selection of appropriate directional filters. Finally, our filters 
should give an exact orientation estimate. We can easily see that simple filters cannot 
be expected to yield such a result. A simple first-order derivative operator, for example, 
would not give any response at local minima and maxima of the gray values and thus 
will not allow determination of local orientation in these places. There isaspecialdass 
of operators, called quadrature filters, which perform better. They can be constructed 
in the following way. Imagine we have a certain directional filter h( k ). We calculate 
the transfer function of t.his filter and then rotate the phase of the transfer function by 
90°. By this action, the wave nurober components in the two filter responses differ by 
a shift of a quarter of a wavelength for every wave number. Where one filter response 
shows zero crossings, the other shows extremes. If we now square and add the two filter 
responses, we actually obtain an estimate of the spectral density, or physically speaking, 
the energy, of the corresponding periodic image structure. We can best demonstrate 
this property by applying the two filters to a periodic structure a cos( kz ). We assume 
that the first filter does not cause a phase shift, but the second causes a phase shift of 
90°. Then 

h1 = h(k)acos(kz) 
h2 = h(k)asin(kz). 

Squaring and adding the filter results, we get a constant phase-independent response 
of h2 a2 • We automatically obtain a pair of quadrature filters if we choose an even real 
and an odd imaginary transfer function with the same magnitude. 
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Figure 7.3: Transfer function of the directional quadrature filter according to (2.43) with 1 = 2 and 
B = 2 in 112.5° direction. 

Returning to the selection of an appropriate set of directional filters, we can state 
further that they should be similar to each other. Thus the resulting filter's transfer 
function can be separated into an angular and a wave number part. Such a filter is 
called polar separable and may be conveniently expressed in polar coordinates 

h(q,if>) = i(q)k(if>), (7.5) 

with q2 = k~ + ki and tanif> = k2/k1• 

Knutsson [1982] suggested the following directional quadrature filters: 

i(q) = [ ln2( qf qo) ] 
exp (B /2)2log 2 

k.(l/>) = cos21(1/>- if>k) (7.6) 

q denotes the magnitude of the wave number; q0 and if>k are the peak wave number 
and the direction of the filter, respectively. The indices e and o indicate the even and 
odd component of the quadrature pair. The constant B determines the half-width of 
the wave numher in the numher of octaves and 1 the angular resolution of the filter. 

In a logarithmic wave number scale, the filter has the shape of a Gaussian function. 
Figure 7.3 shows the transfer function of such a filter. 

A set of directional filters is obtained by a suitable choice of different if>k: 

1rk 
if>k= K k=0,1, ··· ,K-I. (7.7) 

Knutsson used four filters with 45° increments in the directions 22.5°; 67.5°; 112.5° 

and 157.5°. These directions have the advantage that only one filter kernel has to be 
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a) b) 

Figure 7.4: Computation of local orientation by vector addition of the four filter responses. Shown is 
an example where the neighborhood is isotropic concerning orientation: all filter responses are equal. 
The angles of the vectors are equal to the filter directions in a) and double the filter directions in b). 

designed. The kernels for the filter in the other directions are obtained by mirroring the 
kernels at the axes and diagonals. These filters have been designed in the wave number 
space. The filter coefficients are obtained by inverse Fourier transform. H we choose a 
reasonably small filter mask, we will cut-off a number of non-zero filter coefficients. This 
causes deviations from the ideal transfer function. Therefore, Knutsson modified the 
filter kernel coefficient using an optimization procedure, in such a way that it approaches 
the ideal transfer function as close as possible. It turned out that at least a 15 X 15 filter 
mask is necessary to get a good approximation of the anticipated transfer function. 

7.2.2 Vectorial Filter Response Addition 

The local orientation can be (;Omputed from the responses of the four filters by vector 
addition if we represent them · as an orientation vector: the magnitude of the vector 
corresponds to the filter response, while the direction is given by double the filter 
direction. 

Figure 7.4 illustrates again why the angle doubling is necessary. An example is 
taken where the responses from all four filters are equal. In this case the neighborhood 
contains structures in all directions. Consequently, we observe no local orientation and 
the vector sum of all filter responses vanishes. This happens if we double the orientation 
angle (figure 7.4b), but not if we omit this step (figure 7.4a). 

After these more qualitative considerations, we will prove that we can compute 
the local orientation exactly when the local neighborhood is ideally oriented in an 
arbitrary direction </J0 . As a result, we also know how many filters we need at least. 
We can simplify the computations by only considering the angular terms, since the 
filter responses show the same wave number dependence. We can also consider the 
two-dimensional vector of the filter response as a complex number. Using (7.7) we can 
write the angular part of the filter response as 

The factor two in the complex exponential results from the angle doubling. The cosine 
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function is decomposed into the sum of two complex exponentials: 

k~c( </>o) = 2~1 exp (27rik/ K) [exp (i( </>0 -'lrk/ K)) + exp ( -i( <f>o -'lrk/ K))]21 

= ~1 exp (27rik/K) E ( 2.1 ) exp (ij(<f>o -d/K))exp (-i{21- j){</>0 -'lrk/K)) 
2 j=O J 

= 2~1 t ( 2! ) exp {i(j -1)2</>o) exp (27ri(1 + 1- j)(k/ K)). 
3=0 J 

Now we sum up the vectors of all the K directional filters: 

K-1. 1 21 ( 21) K-1 f;, h~c = 221 ~ j exp (i(j -1)2</>0 ) f;, exp (27ri(1 + 1- j)(k/ K)). 

The complex double sum can be solved if we carefully analyze the innersumover k. 
If j = 1 + 1 the exponent is zero. Consequently, the sum is K. Otherwise, the sum 
represents a geometric series with the factor exp (27ri(1 + 1- j)(k/ K)) and the sum 

K-t . . 1- exp (21ri(l + 1- j)) 
~ exp (27rt(1 + 1- J)(k/K)) = (2 "( 1 ")/K)" (7.8) 
k=o 1-exp 7rt1+ -J 

We can use this formula only if the denominator =/:. 0 Vj = 0, 1, · · ·, 21; consequently 
K > 1 + 1. With this condition the sum vanishes. This result has a simple geometric 
interpretation. The sum consists of vectors which are equally distributed on the unit 
circle. The angle between two consecutive vectors is 21rk/ K. 

In conclusion, the inner sum in (7.8) reduces to K for j = 1 + 1, otherwise it is zero. 
Therefore the sum over j contains only the term with j = 1 + 1. The final result 

K-1 • K ( 21) . ~ h~c = 221 . exp (t2</>o) 
k=O J 

(7.9) 

shows a vector with the angle of the local orientation doubled. This concludes the proof. 
From 1 > 0 and K > 1 + 1 we conclude that at least K = 3 directional filters are 

necessary. If we have only two filters (K = 2), the vector responses of these two filters 
lie on a line (figure 7.5a). Thus orientation determination is not possible. Only with 
three or four filters, can the sum vector point in all directions (figure 7.5b and c). 

With a similar derivation, we can prove another important property of the direc
tional filters (7.6). The sumover the transfer functions of the K filters results in an 
isotropic function for K > 1: 

K-1 21 K ( 21) ~ cos (</> -1rk/K) = 221 1 . (7.10) 

In other words: a preferred direction does not exist. This is the reason why we can 
determine local orientation exactly with a very limited nurober of ffiters and a simple 
linear procedure such as vector addition. 
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a) b) c) 

Figure 7.5: Vector addition of the filter responses from K directional filters to determine local orien
tation; a) K = 2; b) K = 3; c) K = 4; sum vector shown thicker. 

7.3 The Tensor Method 

In this section we discuss the question whether we can determine local orientation more 
directly. As a starting point, we consider what an ideally oriented gray value structure 
(7.1) looks like in the wave number domain. We can compute the Fourier transform of 
(7.1) more readily if we rotate the x1 axis in the direction of k. Then the gray value 
function is constant in the x 2 direction. Consequently, the Fourier transform reduces 
to a 8 line in the direction of k. 

It seems promising to determine local orientation in the Fourier domain, since all 
we have to compute is the orientation of the line on which the spectral densities are 
non-zero. Bigün and Gran/und [1987] devised the following procedure: 
• With a window function, we select a smalllocal neighborhood from an image. 
• We Fourier transform the windowed image. The smaller the selected window, the 

more blurred the spectrum will be ( uncertainty relation, see appendix A.2). This 
means that even with ideal local orientation we will obtain a rather band-shaped 
distribution of the spectral energy. 

• Local orientation is then determined by fitting a straight line to the spectral density 
distribution. We yield the angle of the local orientation from the slope of the line. 
The critical step of this procedure is fitting a straight line to the spectral densities 

in the Fourier domain. We cannot solve this problern exactly since it is generally 
overdetermined, but only minimize the measure of error. A standard error measure is 
the square of the magnitude of the vector (see (3.27) in section 3.3.1 ). When fitting a 
straight line, we minimize the sum of the squares of the distances of the data points to 
the line 

00 

J = j d2 k d2(k, k)l9(kW--+ minimum. (7.11) 
-oo 

For the sake of simplicity, k is assumed to be a unit vector. The distance function is 
abbreviated using d( k, k ). The integral runs over the whole k space; the wave numbers 
are weighted with the spectral density 19( k) 12• Equation (7 .11) is not restricted to 
two dimensions, but is generally valid for local orientation or linear symmetry in an n
dimensional space. Since we discuss local orientation in three dimensions in chapter 17, 
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Figure 7.6: Distance of a point in k-space from the line in the direction of the unit vector k. 

we will solve (7.11) for an n-dimensional space. 
The distance vector d can be inferred from figure 7.6 tobe 

(7.12) 

The expression in brackets denotes the scalar product of k and k, and the superscript T 
the transposed vector. (kTk and kkT denote an inner and outer product, respectively.) 
The square of the distance is then given by 

(7.13) 

In order to express the distance more clearly as a function of the vector k, we write it 
in the following manner 

Substituting this expression into (7.11) we obtain 

-T -
J = k Jk, 

where J is a symmetric tensor with the diagonal elements 

00 

Jpp = L:: j dnk k~ig(kW 
q"#P-oo 

and the off-diagonal elements 

00 

Jpq =- j dnk kpkqig(kW. 
-oo 

In the two-dimensional case we can write 

(7.14) 

(7.15) 

(7.16) 

(7.17) 

(7.18) 
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From this equation, we can readily find k so that J shows a minimum value. The 
key to the solution lies in the fact that every symmetric matrix reduces to a diagonal 
matrix by a suitable coordinate transformation ( see appendix A.1): 

J(k) - [f' k'] [ J1 0 ] [ ~~ ] - J k'2 + J k'2 
- 1 2 0 J2 k~ - 1 1 2 2 ° 

(7.19) 

If J 1 < J 2 , we can immediately see that J is minimal in the k1 direction. 
In this way, the problern finally turnsouttobe an eigenvalue problem for the tensor J 

which can be calculated from the spectral densities via (7.16) and (7.17). The direction 
of the oriented pattern is given by the eigenvector k1 to the smallest eigenvalue J1 

(7.20) 

7.3.1 Analogy: The Inertia Tensor 

Before we solve the two-dimensional eigenvalue problem, it is helpful to recognize that it 
is analogous to a well-known physical quantity, namely, the inertia tensor. If we replace 
the wave number Coordinates by space coordinates and the spectral density Jg( k W by 
the specific density p, (7.11) constitutes the integral to compute the inertia of a rotary 
body rotating around the k axis. The tensor in (7.15) becomes the inertia tensor. 

With this analogy, we can reformulate the problern to determine local orientation. 
We must find the axis about which the rotary body, formed from the spectral density 
in Fourier space, rotates with minimum inertia. The rotary body might have different 
shapes. We can relate the shape of the two-dimensional rotary body to the different 
solutions we get for the eigenvalues of the inertia tensor and thus for the solution of the 
local orientation problem. 

1. Ideal local orientation. The rotary body is a line. For a rotation around this line, 
the inertia vanishes. Consequently, the eigenvector to the eigenvalue zero coincides 
with the direction of the line. The other eigenvector is orthogonal to the line, and 
the corresponding eigenvalue is unequal to zero. This eigenvector gives the rotation 
axis for the maximum inertia. 

2. Isotropiegray value structure. In this case, the rotary body is a kind of a flat isotropic 
disk. A preferred direction does not exist. Both eigenvalues are equal, the inertia is 
the same for rotations around all axes. We cannot find a minimum. 

3. Gonstuntgray values (special case of one and two). The rotary body degenerates to 
a point at the origin of the k space. The inertia is zero for rotation around any axis. 
Therefore both eigenvalues vanish. 

From this qualitative discussion, we can conclude that the tensor method to estimate 
local orientation provides more than just a value for the orientation. Using an analysis of 
the eigenvalues of the inertia tensor, we can separate the local neighborhood precisely 
into three classes: a) constant gray values, b) local orientation, and c) distributed 
orientation. 
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7.3.2 Eigenvalue Analysis of the 2-D Inertia Tensor 

In the two-dimensional space, we can readily solve the eigenvalue prob lern. However, 
the solution is not reached in the standard way by solving the characteristic polynomial 
to determine the eigenvalues. It turns out that it is easier to rotate the inertia tensor 
to the principal axes coordinate system. The rotation angle <P then corresponds to the 
angle of the local orientation: 

[ ~1 ~2 ] = [ - :~~ ~ :~~ ~ ] [ ~:~ ~~: ] [ :~~ ~ - :~~ ~ ] . 
Using the trigonometric identities sin 2<P = 2 sin <P cos <P and cos 2<P = cos2 <P- sin2 <P, the 
matrix multiplications result in 

[ 
cos <P sin <P l [ J11 cos <P + J12 sin <P -Ju sin <P + J12 cos <P l 

- sin <P cos <P J 22 sin <P + J12 cos <P J22 cos <P - J12 sin <P 

[ 
J11 cos2 <P + J22 sin2 <P + J12 sin 2<P 1 /2( J22 - Jn) sin 2<P + J12 cos 2<P l· 

- 1/2( J22 - J11 ) sin 2<P + J12 cos 2<P Jn sin2 <P + J22 cos2 <P- J12 sin 2<P 
Now we can compare the matrix coefficients on the left and right side of the equation. 
Because the matrices are symmetric, we have three equations with three unknowns, <P, 
J1 and J 2. Though the equation system is nonlinear, it can be readily solved for <P
Addition of the diagonal elements yields 

(7.21) 

i. e., the conservation of the trace of the tensor under a coordinate transformation. 
Subtraction of the diagonal elements results in 

J1 - J2 = ( Jn - J22) cos 2<P + 2J12 sin 2<P, 

while from the off-diagonal element 

1/2(J22- J11 ) sin 2<P + J12 cos 2<P = 0 

we obtain the orientation angle as 

2J12 
tan2<P = J J 

11- 22 

(7.22) 

(7.23) 

(7.24) 

Without any presumptions we obtained the angle doubling anticipated. In this sense, 
the tensor method is much more elegant than the filter set method discussed in sec
tion 7 .2. Since tan 2<P is gained from a quotient, we can regard the dividend as the y 
and the divisor as the x component of a vector which we call the orientation vector o: 

0 = [ J1~71:22 ] . (7.25) 

This vector has the magnitude 4J12 + J?1 + JJ2 - 2J11 J 22 . In case of isotropically 
distributed orientation (J11 = J22 , J12 = 0), the magnitude of the orientation vector is 
zero. 
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7.3.3 Computing the Inertia Tensor in the Space Domain 

So far, the tensor method to deterrnine local orientation completely took place in the 
Fourier space. Now we will show that we can compute the coefficients of the inertia 
tensor easier in the space domain. 

The integrals in (7.16) and (7.17) contain terms of the form 

and 

Integrals over these terms are inner or scalar products of the functions iklfJ( k ). Since the 
inner product is preserved under the Fourier transform (section 3.3.1), we can compute 
the corresponding integrals in the spatial domain as well. Multiplication of [J( k) with 
ik1 in the wave number domain corresponds to perforrning the first spatial derivative in 
the same coordinate in the space domain: 

diagonal elements JPP 

(7.26) 
off-diagonal elements Jpq = 

The integration area corresponds to the window we use to select a local neighborhood. 
On a discrete image matrix, the integral can be entirely performed by convolution. 
Integration over a window limiting the local neighborhood means convolution with a 
smoothing mask B of the corresponding size. The partial derivatives are computed with 
the derivative operators 'D" and 'Dy. Consequently the elements of the inertia tensor 
are essentially computed with nonlinear operators 

In two dimensions, the vectorial orientation operator is then given by 

O = [ .J22 - .Jn ] . 
2.:112 

(7.27) 

(7.28) 

It is important to note that the operators .:fkt and 0 arenonlinear operators contain
ing both linear convolution operations and nonlinear point operations (multiplications) 
in the space domain. In particular this means that we must not interchange the multi
plication of the partial derivatives with the smoothing operations. 

In their paper on "Analyzing oriented patterns", Kass and Witkin [1985] arrived 
at exactly the same expression for the orientation vector. Interestingly, they started 
entirely differently using directional derivatives. Since it now turns out that derivative 
operators are central to the orientation problem, we may wonder what went wrong with 
our initial idea to use the gradient operator for orientation analysis in section 7.1. The 
basic difference is that we now multiply the spatial derivatives and then average them, 
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before we compute the orientation. This means that instead of the vector gradient 
operator a symmetric tensor operator of the form 

.1' = [ ~~~ ~~~ ] (7.29) 

contains the appropriate description for the gray value changes in a local neighbor
hood. This tensor is sometimes called the scatter matrix. It is different from the 
two-dimensional inertia tensor 

(7.30) 

However, these two tensors are closely related 

.1 = trace(.1') [ ~ ~ ] - .1', .1' = trace(.1) [ ~ ~ ] - .1. (7.31) 

From this relationship it is evident that both matrices have the same set of eigenvectors. 
The eigenvalues are related by 

n n 

Jp = L:Jq - J;, J; = L:J; - Jp. (7.32) 
q=l q=l 

Consequently, we can perform the eigenvalue analysis with any of the two matrices. We 
will obtain the same set of eigenvectors. For the inertia tensor, the direction of local 
orientation is given by the minimum eigenvalue, but for the scatter matrix it is given 
by the maximum eigenvalue. 

Finally, we discuss the interpretation of the estimated orientation information. Both 
the scatter and the inertia matrix contain three independent coefficients. In contrast, 
the orientation vector contains only two parameters (7.28) and thus does not include 
the entire information. The direction of the vector is twice the angle of the orienta
tion and the magnitude of the vector is a measure of the certainty of the estimated 
orientation. There are, however, two reasons for failure of the orientation measure. 
The neighborhood may contain a constant gray value area or an isotropic gray value 
structure without a preferred orientation (see also classification of orientation in sec
tion 7.3.1). To distinguish these two cases we need to compare the magnitude of the 
orientation vector with the mean square magnitude of the gradient 

(7.33) 

which is essentially the trace of both the inertia tensor (7.30) and the scatter matrix 
(7.29). A zero orientation vector combined with a non-zero mean square magnitude of 
the gradient indicate an isotropic gray value structure. If both are zero, a constant gray 
value structure is given. Consequently, we may express a coherence measure for local 
orientation by 

(7.34) 

The coherence ranges from 0 to 1. For ideallocal orientation (J1 = 0, J2 > 0) it is one, 
for an isotropic gray value structure (J1 = J2 > 0) it is zero. 
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7.3.4 Examples and Applications 

In the final section of this chapter, we show severa.l examples and applications of ori
entation analysis. The image with the concentric rings {figure 6.4) is an excellent test 
pattern for orientation analysis with which we now demonstrate the computation of the 
orientation vector step by step. First we calculate the horizontal and vertical spatial 
derivatives with the [1 0 -1) mask {figure 7.7a and b). Then we perform thepoint-wise 
multiplications of the two resulting images with each other and by themselves. After 
smoothing these images with a 8 16 binomial filter and another subtraction, we obtain 
the two components of the orientation vector (figure 7.7c and d). The magnitude {fig
ure 7.7e) and phase {figure 7.7f) of the orientation vector are computed by a Cartesian 
to polar coordinate transformation {for a fast implementation see section 4.4). 

Representing the orientation vector with two gray value images, either in Cartesian 
or polar representation, does not give a good impression of the orientation. Moreover, 
mapping the cyclic orientation angle onto a gray value scale results in a discontinuity 
and gives a wrong visual impression. Grientations which are mapped to the minimal 
and maximal gray values and which are in fact only slightly different, visually appear as 
completely different values. A much better representation of the vectorial orientation 
is the color coding technique discussed in section 7.1.2 and shown in plate 8b. There is 
a gradual change in color for all orientations and perpendicular orientations are shown 
in complementary colors. Plate 8 also shows that the orientation estimate is quite 
noise insensitive. The accuracy of orientation analysis will be discussed in detail in 
section 17.4.5. 

The test image discussed so far contains only ideally orientated patterns. The ex
amples in plate 9 give an impression of the orientation analysis with real-world images. 
The edges show up as colored lines, so that differentially oriented patterns can im
mediately be recognized by the colors. The certainty and coherency measures of the 
orientation analysis for the image in plate 9a are shown in figure 7.8. We recognize that 
the certainty measure does not drop at the intersections of lines, while the coherency 
measure does, indicating that a coherent local orientation does not exist at corners. 

Plate 10 demonstrates how orientation analysis can be integrated into a hierarchy of 
simple processing steps to solve complex tasks. The original image contains a piece of 
calfskin from which a circular sectorwas rotated {plate lOa). From this image, the local 
orientation is computed (plate lOb). After smoothing the orientation image (plate lOc), 
the edge of the rotated sector can be computed with derivative operators in a similar 
manner as from a simple gray value image. 

Grientation constitutes an important property for image enhancement (plate lOe--g). 
The original shows a distorted fingerprint image with partly disrupted lines (plate lOe). 
With the help of the orientation field {plate lOf), we can use a technique, called adaptive 
jiltering to restore the image. We use the orientation field to smooth the image along 
the lines, and to sharpen it in the normal direction. The two steps, orientation deter
mination and adaptive filtering, can be repeated iteratively. After only two iterations, 
a considerably improved fingerprint is obtained {plate lOg). 



7.3 The Tensor Method 171 

Figure 7.7: The individual filter operations combined in the tensor method for orientation analysis are 
demonstrated with a test image: a) V,.; b) V 11 ; c) B(V11 • V 11 - V,. · V,.); d) B(V,. · V 11 ); e) magnitude 
and f) phase of the orientation vector. 
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Figure 7.8: Grientation analysis of the image plate 9a: a) coherency measure; b) certainty measure. 



8 Scales 

8.1 Multigrid Data Structures 

The effect of all the operators discussed so far - except for recursive filters - is re
stricted to local neighborhoods which are significantly smaller than the size of the image. 
This inevitably means that they can only extract local features. We have already seen 
a tendency that analysis of a more complex feature such as local orientation ( chapter 7) 
requires larger neighborhoods than computing, for example, a simple property such as 
the Laplacian (section 6.2). It is quite obvious that a larger neighborhood can show a 
larger set of features which requires more complex operations to reveal them. If we ex
trapolate our approach by analyzing larger scales in the image with larger filter kernels, 
we inevitably run into a dead end. The computation of the more complex operators 
will become so tedious that they are not Ionger useful. 

We can also run into problems computing even very simple operations. lmagine that 
we irrtend to calculate the first horizontal derivative of an image which shows only slowly 
varying gray values, i. e., large-scale features. Here only small gray value differences will 
exist between neighboring pixels. Because of the limited resolution of the gray values, 
the result of the operation will contain significant inaccuracies. The problern is caused 
by a scale mismatch: the gray values only vary on large scales, while the derivative 
operator operates on much finer scales, subtracting the neighboring pixels. 

From these remarks we can conclude that we need new data structures to separate 
the information in the image into different "scale channels". The fine structures which 
are contained in an image must still be represented on a fine grid, whereas the large 
scales can be represented on a much coarser grid. On the coarse grid, the large scales 
come within the range of effective neighborhood operators with small kernels. In this 
way, we represent the image on a multigrid or multiscale data structure. 

If we represent an image on a grid in the spatial domain, we do not have any 
access to the scales at all. This fact results from the uncertainty relation. We know 
the position with an accuracy of the grid constant 6x, but the local wave number at 
this position may be any out of the range of the wave numbers from 0 to M 6k = 
21rMj6x (figure 8.la). The other extreme is given by representing the image in the 
wave number domain. Each pixel in this domain represents one wave number with the 
highest resolution possible given for an image, but any positional information is lost 
since these periodic structures are spread over the whole image ( figure 8.1 b). 
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Figure 8.1: Illustration of the interdependence of resolution in the spatial and wave number domain 
in one dimension: a) representation of the image in the space domain; b) representation of the image 
in the wave number domain. 

Under these considerations, the representation of an image in either the spatial or 
wave number domain describes opposite extremes. Between these extremes there should 
exist many other possibilities to represent image data. These data structures illustrate 
the fact that the image is separated into different ranges of wave numbers, but still 
preserves some spatial resolution. 

8.2 Gauss and Laplace Pyramids 

8.2.1 Introduction 

In this section we discuss the transformation of an image which is represented on a 
grid in the spatial domain into a multigrid data structure. From what we have learnt 
so far, it is obvious that we cannot just subsample the image by taking, for example, 
every second pixel in every second line. If we did so, we would disregard the sampling 

theorem (see section 2.3.3). For example, a structure which is sampled three times 
per wavelength in the original image would only be sampled one and a half times in 
the subsampled image and thus appear as a Moire pattern. Consequently, we must 

ensure that all wave numbers which are sampled less than four times per wavelength 
are suppressed by an appropriate smoothing filter to ensure a proper subsampled image. 
Generally, the requirement for the smoothing filter can be formulated as 

B(k) = o vic, ~ ~. 
p; 

(8.1) 

where p; is the subsampling rate in the ith coordinate. 
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Figure 8.2: Gauss pyramid: a) schematic representation, the squares of the checkerboard correspond 
to pixels; b) example. 

If we repea.t the smoothing and subsa.mpling operations iteratively, we obtain a. 
series of images, which is called the Gauss pyramid. From level to level, the resolu
tion decreases by a factor of two; the size of the images is decreasing correspondingly. 
Consequently, we can think of the series of images as being arranged in the form of a 
pyramid as illustrated in figure 8.2a. 

The pyramid does not require much storage space, since the number of pixels in one 
direction decreases by a factor of two from level to level. Generally, if we consider the 
formation of a pyramid from a p-dimensional image with a subsampling factor of two 
and M pixels in each coordinate direction, the total number of pixels is given by 

M p ( 1 1 ) MP 2P 1+-+-22 + ... < -2--. 2P p P-1 {8.2) 

For a two-dimensional image, the whole pyramid only needs one third more space than 
the original image. Likewise, the computation of the pyramid is equally effective. The 
same smoothing filter is applied to each level of the pyramid. Thus the computation of 
the whole pyramid only needs four thirds of the operations necessary for the first level. 

The pyramid brings large scales into the range of local neighborhood Operations 
with small kernels. Moreover, these operations are performed efficiently. Once the 
pyramid has been computed, we can perform neighborhood operations on large scales 
in the upper Ievels of the pyramid - because of the smaller image sizes - much more 
efficiently than for finer scales. The Gauss pyramid constitutes a series of lowpass 
filtered images in which the cut-off wave numbers decrease by a factor of two (an 
octave) from level to level. Thus only more and more coarse details remain in the 
image (figure 8.2b ). Only a few Ievels of the pyramid are necessary to span a wide 
range of wave numbers. From a 512 x 512 image we can usefully compute only a seven
level pyramid. The smallest image is then 8 X 8. 

From the Gauss pyramid, another pyramid type can be derived, the Laplace pyramid, 
by subtracting the smoothed from the unsmoothed image on each level (figure 8.3). In 
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Figure 8.3: Construction of the Laplace pyramid from the Gauss pyramid. The left and right column 
show the Gauss and Laplace pyramid, respectively. The images at alllevels have been enlarged to the 
original size by appropriate interpolation. 
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this way, only the fine scales, removed by the smoothing Operation, remain in the finer 
level. The name Laplace pyramid results from the fact that subtracting an image 
smoothed by an isotropic operator from its original corresponds to a Laplace operator 
(section 6.2.2). The Laplace pyramid is an effective scheme forabandpass decomposition 
of the image. The center wave nurober is halved from level to level. The last image of 
the Laplace pyramid is a lowpass-filtered image containing only the coarsest structures. 
If we add up the images at the different levels of the Laplace pyramid, starting with 
the highest level, we obtain the Gauss pyramid again. With the addition of each level 
of the Laplace pyramid, finer details become visible. 

In contrast to the Fourier transform, the Laplace pyramid only leads to a coarse 
wave nurober decomposition and not to a directional decomposition. All wave numbers, 
independent of their direction, within the range of about an octave (factor of two) are 
contained in one level of the pyramid. Because of the coarse wave nurober resolution, 
we can preserve a good spatial resolution. Each level of the pyramid only contains 
matehing scales which are sampled a few times (two to six) per wavelength. In this 
way, the Laplace pyramid is adapted to the uncertainty relation. 

The Gauss and Laplace pyramids are examples of multigrid data structures which 
have been introduced into digital image processing in the early 1980s and have led 
to considerable progress in digital image processing since then. A new research area, 
multiresolutional image processing, has been established [Rosenfeld, 1984]. We will 
discuss a nurober of applications using pyramids in further chapters. 

In this chapter we will continue our discussion on pyramids. First we will describe 
several algorithms to compute the Gauss and Laplace pyramids. Then we will dis
cuss optimal smoothing filters for pyramids. Special attention will also be paid to the 
interpolationproblern which arises when we enlarge an image to the next finer grid. 

8.2.2 Algorithms for Pyramidal Decomposition 

First we will discuss the original Gauss and Laplace pyramids as suggested by Burt 
and Adelson [1983] and Burt [1984]. They used an even, separable, symmetric 5 x 5 
smoothing mask g = 9x9y with the filter kernel 

Gx,y = (//2 ß/2 a ß/2 1/2) (8.3) 

and the transfer function 

(8.4) 

Burt and Adelsou tried to infer the proper coefficients a, ß, and 1 from the following 
principles: 

1. Normalization. A proper smoothing mask requires preservation of the mean gray 
values, i. e., Gx,y(O) = 1. From (8.4) we obtain 

a+ß+!=l. (8.5) 

2. Equal contribution. All points should equally contribute to the next higher level. 
Each even point is one time central (factor a) and two times edge point (factor 1/2), 
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Figure 8.4: Graphical illustration of the generation of a one-dimensional Gauss pyramid after Burt 
[1984]: each dot row represents a Ievel of the pyramid. The pixels of the lowest Ievel are the gray 
values of the original. One point of the next Ievel is computed from five points from the lower Ievel 
with the same filter kernels on each Ievel. The pixel distance doubles from layer to layer. 

each odd point is weighted two times by ß/2. Hence 

o: +I= ß. {8.6) 

3. Adequate smoothing. Condition {8.6) coincides with another requirement: a useful 
smoothing mask should make the highest wave number vanish, i.e., Gx,y{1) = 0. 

Equations (8.5) and {8.6) leave one degree of freedom in the choice of the filter coeffi
cients. Subtracting both equations yields 

ß = 1/2 
o: + 1 = 1/2. 

{8.7) 

Masks which meet these requirements are the binomial filter 8 4 {section 6.1.2, o: = 
6/16) 

B! = 1/16 [1 4 6 4 1] 

and a more box-like filter {o: = 1/4) 

1/8[12 2 21] = 1/4[1111] * 1/2[11]. 

The lowest level of the Gauss pyramid consists of the original image G(o). We denote 
the level of the pyramid with a braced superscript. This image will be smoothed with 
the operator ß(O). The braced superscript again denotes the level on which the operator 
is applied. We obtain the first level of the Gauss pyramid if we apply a subsampling 
operator R.,(o) onto the smoothed image which picks out every second pixel in every 
second line 

G(l) - (BG)(o) 
m,n- 2m,2n• {8.8) 

In summary, the first level of the Gauss pyramid is given by 

{8.9) 
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The same operations are performed with the new image G(l) and all subsequent levels 
of the pyramid. Generally, 

(8.10) 

and 

G(P) = (!X('R.ß)(P)) G(o)_ (8.11) 

With the operator product, we have to be careful with the order of the indices, since 
the operators are not commutative. Thus the indices increase from right to left. 

The Laplace pyramid is formed by subtracting the images between consecutive levels 
in the Gauss pyramid. In order to perform this operation, we first must expand the 
image from the higher level to the double size so that both images show the same 
resolution. This operation is performed by an expansion operator, t:, which is the 
inverse of the reduction Operator n. Essentially, the expansion Operator puts the known 
image points from the coarser image onto the even pixel positions at the even rows and 
interpolates the missing other points from the given points. Thus the first level of the 
Laplace pyramid is formed by the following operation: 

(8.12) 

In a similar manner, we obtain the higher levels of the Laplace pyramid 

L<P> = Q<P>- t:<P+l)Q(P+l) = [z<P+l)- t:<P+t>(nB)<P>] (}fcnB)<P>) G<o>. (8.13) 

Reconstruction of the original image from its representation in a Laplace image 
starts at the highest level. There, we have a smoothed image, G(P+l). From (8.13) we 
see that we obtain the next lower level of the Gauss pyramid by expanding G(P+l) and 
adding L(P) 

(8.14) 

We continue this operation, until we obtain the original image at the lowest level 

(8.15) 

It is important to note that the reconstruction of the original image is exact except 
for round-off errors. This is no Ionger the case if we introduce a slight modification 
which makes computation of the Laplace pyramid easier. In (8.12), we first reduce 
the smoothed image and then expand it again. Actually, we can avoid this operation 
provided that no errors are introduced by the expansion operation, i. e., that the expan
sion operator t: is the exact inverse of the reduction operator 'R.. Then we can simply 
compute a level of the Laplace pyramid by subtracting the smoothed from the original 
image on the same level 

(8.16) 

or in operator notation 
.C =I- B. (8.17) 
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8.2.3 Filters for Pyramid Formation 

As we already discussed in section 8.2.1, the subsampling operation is only error free if 
we meet the sampling theorem (section 2.3.3). Thus the smoothing filter must remove 
all the wave numbers k ;::: 1/2. Figure 8.5 shows the transfer functions of the first Ievel 
of the Laplace pyramid for different types of smoothing filters. The egg-cup shaped 
form results from the difference of the two smoothing filters in the first and zero Ievel 
of the pyramid ((1) .C = (I- (1) ß)(o) B). The decrease towards the higher wave numbers 
is caused by the smoothing filter at Ievel zero. 

Smoothing by the 5 x 5 binomial mask, as suggested by Burt, is insufficient, since 
the transfer function goes down to zero at the highest wave numbers. The results are 
significant Maire patterns in the pyramid if the image contains periodic structures as in 
the test image figure 8.6. At least a 9 x 9 binomial filter (88 ) is required (figure 8.5b), 
although a 17 x 17 filter (816) is better (figure 8.5c). 

Radial cross sections through the transfer functions show that the binomial smooth
ing filters result in a rather wide bandpass decomposition in the Laplace pyramid. The 
maximum of the transfer function in one plane is just about 50 %. Each wave number 
is distributed over about three Ievels. A wave number which has a maximum response 
in one Ievel also occurs with a response of about 28%, 8%, and 14% in the Ievels one 
below, two below, and one above, respectively. Especially disturbing is the fact that 
low wave mimbers are filtered out only proportionally to k2 • 

Steeper smoothing filters result in a sharper separation of the wave numbers. In 
section 6.3.3 we have discussed a dass of smoothing operators which fall off with higher 
powers in k. With these filters, the maximum of the transfer nmction increases and a 
wave number is only distributed over two Ievels of the Laplace pyramid. 

In conclusion, we can state that use of different smoothing filters gives control when 
optimizing the Laplace pyramid for a given image processing task. By varying the 
cut-off wave number of the smoothing filter, we can adjust where the peak of the wave 
number occurs in the pyramid, and by the steepness of the smoothing filter, we can set 
the range of wave numbers contained in one Ievel. 

8.2.4 Interpolation 

In section 2.3.4 we said that reconstruction of a continuous function from sampled 
points can be considered as a convolution operation 

(8.18) 
m,n 

where h is the continuous interpolation mask 

h( a:) = sin 1rxt/ D.x1 sin 1rx2j D.x2 

1rxd D.x1 1rx2/ D.x2 
(8.19) 

with the transfer function 

(8.20) 
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a) 

c) d) 

Figure 8.5: Transfer functions of the first Ievel of the Laplace pyramid using different smoothing filters: 
a) 8 4 ; b) 88 ; c) 8 16 ; d) second-order smoothing filter; e) third-order smoothing filter; f) fourth-order 
smoothing filter. 
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Figure 8.6: Moire patterns in a Laplace pyramid caused by insufficient smoothing with a 5 x 5 binomial 
mask. 

The formalism becomes easier if we only want to calculate the points on the next finer 
grid. Then the continuous interpolation kernel reduces to a discrete convolution mask. 
Since the interpolation kernel (8.19) is separable, we first can interpolate the intermedi
ate points in a row in a horizontal direction before we interpolate the intermediate rows 
by vertical interpolation. The interpolation kernels are the same in both directions. We 
need the continuous kernel h( x) at only half integer values for x / ßx 

... - 5/2 - 3/2 - 1/2 1/2 3/2 5/2 (8.21) 

and obtain the following infinite kernel 

( )m-1 2 ] 
- 1 (2m -1)1r ... · 

(8.22) 

h=[···(-1)m-1 2 
(2m- 1)7r 

2 2 2 2 2 2 

37r 7r 7r 

It is not practicable to use this ideal filter mask. Therefore, we need a useful approxima
tion. The interpolation mask is of even symmetry with an even number of coefficients, 
since the results are placed halfway between the grid points. Generally, the transfer 
function of such a filter is given by 

• - R (2m- 1) -
h(k) = 2:2am cos 2 1rk. 

m=1 

(8.23) 
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Figure 8.7: Radial cross section through the transfer functions at the Ievels 1 to 4 of the Laplace 
pyramid using different smoothing filters: a) 8 8 ; b) 8 16 ; c) second-order smoothing filter; d) third
order smoothing filter. The dashed verticallines mark the maximum wave numbers of the different 
Ievels. The parts of the transfer functions which exceed the maximum wave number are shown as 
black. 

The optimization task is to chose the coefficients hm in such a way that h approximates 
the ideal transfer function (8.20), the box function, in an optimum way using a filter with 
2R coefficients. We take a similar approach as in section 6.3.4. The cosine functions 
are expanded in Taylor series. We can then collect all the terms with equal powers 
in k. Our aim is to have a fi.lter with a transfer function which is constant as long as 
possible. Thus all coefficients of the Taylor expansion, except for the constant term, 
should vanish and we obtain the linear equation system 

1 
1 
1 

1 1 
9 25 

81 625 

1 
(2R- 1)2 

(2R- 1)4 

(2R-1)2R 

1 
0 
0 

0 

(8.24) 

The simplest interpolation mask is given by R = 1. Then we interpolate the in
termediate value only from the left and right neighboring pixel. The transfer function 
reduces to {l)h(k) = cos(7rk/2) and the filter mask to 1/2 [1 1]. This convolution oper
ation constitutes a simple linear interpolation. In two dimensions, we speak of bilinear 

1.0 

1.0 
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Figure 8.8: Optimal transfer function to interpolate an image to double the size, according to {8.24) 
for filter sizes R as indicated. 

interpolation because we separate the interpolation into a horizontal and a verticallin
ear interpolation. From the transfer function shown in figure 8.8, it is obvious that 
linear interpolation is not sufficient. Even periodic structures with intermediate wave 
numbers are damped significantly, e. g., k = 1/2 by 30%. 

For a better interpolation, we need larger filter masks such as 

1/16[-199 -1] 
1/256 [3 - 25 150 150 - 25 3] {8.25) 

1/1024 [-5 49 - 245 1225 1225 - 245 49 - 5]. 

With increasing R the transfer function approaches the box function better. However, 
convergence is slow. For an accurate interpolation, we must either take a large in
terpolation mask or limit the wave numbers to smaller k by using a larger smoothing 
mask. 



9 Texture 

9.1 lntroduction 

Local orientation ( chapter 7) was the first example of a more complex feature describing 
the structure of the gray values in a local neighborhood. It enabled us to distinguish 
objects not only because of their gray values but also because of the orientation of 
the patterns ( compare :figure 7.1 ). Real-world objects often carry patterns which differ 
not only in their orientation, but also in many other parameters. Our visual system 
is capable of recognizing and distinguishing such patterns with ease, but it is difficult 
to describe the differences precisely (:figure 9.1). Patterns which characterize objects 
are called textures in image processing. Actually, textures demonstrate the difference 
between an arti:ficial world of objects whose surfaces are only characterized by the color 
and reflectivity properties to that of real-world imagery. We can see a similar trend 
in computer graphics. If we place a texture on the surface of objects, a process called 
texture mapping, we obtain much more realistic images (see also plate 3). 

In this chapter we systematically investigate Operators to analyze and differentiate 
between textures. These operators are able to describe even complex patterns with few 
but characteristic :figures. We thereby reduce the texture recognition problern to the 
simple task of distinguishing gray values. To give an overview, we first summarize some 
simple parameters which might be suitable to describe textures: 

• Mean gray value 
• Local variance of the gray value 
• Local orientation of the gray value structure 
• Characteristic scale of the gray value structure 
• Variance of local orientation 
• Variance of the characteristic scale 

This list starts with the trivial feature of the mean gray value. The local variance 
of the gray value is a simple description of the statistics of the gray values in a small 
neighborhood (see section 4.2.1 ). The next two parameters, local orientation and char
acteristic scale, examine the spatial structure of the gray values more closely. The :first 
tells us in which direction the gray values predominantly change and the second with 
which spatial periodicity. We can regard the first two features, the mean and variance 
of the gray value, as zero-order spatial features, since they do not depend on the spatial 
structure at all. The local variance and the characteristic spatial scale give a first-order 
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Figure 9.1: Examples for textures: a) curtain; b) wood; c) dog fur; d) woodchip paper; e), f) clothes. 
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deseription of the spatial features of a loeal neighborhood. 
At this level we ean continue the deseription with larger neighborhoods. We ean 

ealeulate the mean and the varianee of these features. In this way our attention is agairr 
foeused on the fact that image proeessing is a hierarehieal proeess. We just need a small 
set of elementary operations and ean apply them to different levels. 

The erueial question is whether this is a valid approaeh. We may compare it to the 
Taylor expansion of a function. The more preeisely we want to deseribe the funetion, 
the morehigh order terms we must take into aeeount. However, with several functions 
we might not be sueeessful. The Taylor expansion may eonverge too slowly or not at 
all. Analogously, we are faeed with the sameproblern in texture analysis. 

Texture ean be regular or random. Most natural textures are random. This means 
that all the parameters diseussed so far may be subjeet to random fluctuations. Tex
tures may be organized in a hierarchical manner, i. e., they may look quite different 
at different seales. A good example is the eurtain shown in figure 9.la. On the finest 
seale our attention is foeused on the individual thread. Then the eharacteristie seale 
is the thiekness of the threads. They also have a predominant loeal orientation. On 
the next coarser level, we will reeognize the meshes of the net. The eharaeteristie seale 
here shows the diameter of the meshes. At this level, the loeal orientation is well dis
tributed. Finally, at an even coarser level, we no Ionger reeognize the individual meshes, 
but observe the folds of the eurtain. They are eharaeterized by yet another eharaeter
istie seale, showing the period of the folds and their orientation. These eonsiderations 
emphasize the importanee of multiscale texture analysis. The deseriptions in ehapter 8 
on multigrid image data structures are essential for texture analysis. 

We ean separate texture parameters into two classes. Texture parameters may be 
or may be not rotation and seale invariant. This classifieation is motivated by the 
task we have to perform. Imagine a typieal industrial or seientifie applieation in whieh 
we want to reeognize objeets whieh are randomly orientated in the image. We are not 
interested in the orientation of the objects but in the distinction from others. Therefore 
texture parameters whieh depend on the orientation are of no interest. We might 
still use them but only if the objects have a eharacteristie shape whieh then allows 
us to determine their orientation. We ean use similar arguments for seale-invariant 
features. If the objeets of interest are loeated at different distanees from the eamera, the 
texture parameter used to recognize them should also be seale-invariant. Otherwise the 
reeognition of the object will depend on the distanee. However, if the texture ehanges 
its eharacteristies with the seale - as in the example of the eurtain in figure 9.la -
the seale-invariant texture features may not exist at all. Then the use of textures to 
eharaeterize objeets at different distanees beeomes a diffieult task. 

In the examples above, we were interested in the objeets themselves but not in 
their orientation in spaee. The orientation of surfaees is a key feature for another image 
proeessing task, the reeonstruction of a three- dimensional seene from a two-dimensional 
image. If we know the surfaee of an objeet shows a uniform texture, we ean analyze 
the orientation and seales of the texture for the orientation of the surfaee in spaee. For 
this, the eharaeteristie seales and orientations of the texture are needed. 
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9.2 Rotation and Scale Invariant Texture Features 

9.2.1 Local Variance 

All parameters derived from the statistics of the gray values for individual pixels -
in principle - are independent of the orientation of the objects. In section 4.2.3 we 
discussed an estimate of the gray value distribution of a homogeneous random field, 
i. e., averaged over the whole image. Besides the mean value, we learnt to characterize 
the gray value distribution by the mean, variance and higher moments (section 4.2.1). 

To be suitable for texture analysis, the estimate of these parameters has to be 
adapted to a local neighborhood. In the simplest case, we can select a window W and 
compute the parameters only from the pixels contained in this window. The variance 

operation, for example, is then given by 

1 " 2 Vmn = p _ 1 L...,. (Gm-k,n-1- (G)mn) • 
k,IEW 

(9.1) 

The sum runs over the P image points of the window. The expression (G)mn denotes 
the mean of the gray values at the point (m,n), computed over the same window W: 

1 
(G)mn = p L Gm-k,n-1• 

k,IEW 

(9.2) 

It is important to note that the variance operator is nonlinear. However, it resembles the 
generalform of a neighborhood operation- a convolution. Combining (9.1) and (9.2) 
we can show it as a combination of linear convolution and nonlinear point operations 

Vmn = p ~ 1 [ L: G~-k,n-1 - (~ L: Gmn) 
2
] , 

k,IEW k,IEW 

(9.3) 

or, in operator notation, 
V = 'R(I ·I) - ('R · 'R). (9.4) 

The operator n denotes a smoothing over all the image points with a box filter of the 
size of the window W. The operator I is the identity operator. Therefore the operator 
I · I performs a nonlinear point operation, namely the squaring of the gray values at 
each pixel. Finally, the variance operator subtracts the square of a smoothed gray value 
from the smoothed squared gray values. From discussions on smoothing in section 6.1 
we know that a box filter is not an appropriate smoothing filter. Thus we obtain a 

better variance Operator if we replace the box filter n with a binomial filter B 

V = B(I ·I) - (B · B). (9.5) 

We know the variance operator to be isotropic. It is also scale independent if the 
window is larger than the largest scales in the textures and if no fine scales of the 
texture disappear because the objects are located further away from the camera. This 
suggests that a scale invariant texture operator only exists if the texture itself is scale 
invariant. 
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Figure 9.2: Variance operator applied to different images: a) figure 6.6a; b) figure 9.1e; c) figure 9.1f; 
d) figure 9.1d. 

The application of the variance operator (9.5) with 8 16 to several images is shown in 
figure 9.2. In figure 9.2a, the variance operatorturnsout as an isotropic edge detector, 
since the original image contains areas with more or less uniform gray values. The other 
three examples in figure 9.2 show variance images from textured surfaces. The variance 
operator can distinguish the areas with the fine horizontal stripes in figure 9.le from 
the more uniform surfaces. They appear as uniform bright areas in the variance image 
(figure 9.2b ). The variance operator cannot distinguish between the two textures in 
figure 9.2c. The chipwood paper (figure 9.2d) gives no uniform response to the variance 
operator since the scales are too coarse for the smoothing operator applied. 

Besides the variance, we could also use the higher moments of the gray value dis
tribution as defined in section 4.2.1 for a more detailed description. The significance 
of this approach may be illustrated with examples of two quite different gray value 
distributions, a normal and a bimodal distribution 

Both distributions show the same mean and variance but differ in higher-order moments. 
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9.3 Rotation and Scale Variant Texture Features 

9.3.1 Local Grientation 

As local orientation has already been discussed in detail in chapter 7, we now only 
discuss some examples to illustrate the significance of local orientation for texture anal
ysis. The local orientation computed from the texture examples in figure 9.1 is shown in 
plate 12. In the images of the dog fur (plate 12a and b) and the piece of cloth (plate 12c 
and d) most areas show well oriented textures. In contrast, plate 12e and f contains 
patterns with orientations in all directions. 

9.3.2 Local Wave Number 

Plate lla shows an image where we have difficulty in recognizing any object at all. 
Only after comparing the original with the analyzed image (plate 11 b), do we discover 
that the greyhound dogs differ from the background by a finer scale of the random gray 
value fiuctuations. This image is an example where all the texture operators discussed 
so far will fail. The textures of the object and the background in plate 11 differ only 
by characteristic scale, so we need a suitable operator which computes the local wave 
number. 

Knutsson [1982] and Knutsson and Granlund [1983] suggested an operator which 
works sirnilar to the operator for local orientation (section 7.2). They use the same 
type of quadrature filters as for local orientation (7.6): 

l(q) = 

(9.6) 

ko(<P) = icos21 (</>- <Po) signum[cos(</>- <Po)]. 

This time, however, a set is used in which the directional dependence, i. e., l, is kept 
constant. The filters differ by the radial maximum qk. As with local orientation, 
the filter responses are added vectorially but the angle of the filters now refers to a 
local wave number instead of a local orientation. J( nutsson (1982] showed that, with 
a suitable choice of qk, an exact determination of the local wave number of a purely 
periodic structure is possible. 

The image shown in plate llb was filtered with this operator. Areas in which the 
local wave number exceeds a certain threshold are shown in red. 

9.3.3 Pyramidal Texture Analysis 

The Laplace pyramid is an alternative to the local wave number operator, since the 
different scales of the texture are placed at different levels of the Laplace pyrarnid. This 
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Figure 9.3: Application of the variance operator to the Laplace pyramid of the image from figure 9.1f. 

decomposition does not compute a local wave number directly, but we can obtain a 
series of images which show the different scales of the texture. 

The variance operator takes a very simple form with a Laplace pyramid, since the 
mean gray value - except for the coarsest level - is zero 

(9.7) 

Figure 9.3 demonstrates how the different textures from figure 9.1f appear at differ
ent levels of the Laplace pyramid. In the finest scale at the zero level of the pyramid 
(figure 9.3a), the texture with small periodically arranged dots becomes apparent, while 
the first level (figure 9.3b) shows other areas with vertically oriented threads. The sec
ond level of the Laplace pyramid (figure 9.3c) is too coarse to show any textures. The 
bright areas now mark the edges between the two textures. 

Nonlinearoperators like the variance operator must be used with caution because of 
the sampling theorem. Point-wise squaring of the gray values in the spatial domain cor
responds to a convolution operation of the image with itself in the wave number space. 
Consequently, the range of wave numbers doubles. We can illustrate this phenomenon 
with a periodic structure 

g(z) = cos(zk). (9.8) 
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After squaring, we obtain two terms 

1 1 
g(:c) = cos2 (:ck) = 2 + 2cos(:c2k), (9.9) 

one with a double wave number and another with a constant term. As a result, we have 
to use supersampled images in order not to obtain Moire patterns after squaring. Thus 
it seems to be advisable to sample each periodic structure with at least four samples 
per wavelength if we apply a nonlinear operator as the variance operator. 

The Laplace pyramid is a very well adapted data structure for the analysis of hierar
chically organized textures which may show different characteristics at different scales 
as in the example of the curtain discussed in section 9.1. In this way we can apply such 
operators as local variance and local orientation at each level of the pyramid. The si
multaneous application of the variance and local orientation operators at multiple scales 
gives a rich set of features which allows even complex hierarchical organized textures to 
be distinguished as demonstrated in plate 13. It is important to note that application 
of these operations on all levels of the pyramid only increases the computation by a 
factor of 4/3. 

9.4 Fractal Description of Texture 

For several years it has been known that many natural patterns can be adequately 
described using the methods of fractal geometry [Mandelbrot, 1982]. Fractal objects 
have found an important place in computer graphics, as they are capable of producing 
naturally looking objects such as clouds, mountain trains and water surfaces [Peitgen 
and Richter, 1986]. This seems to indicate that fractal geometry could be an appropriate 
description of textures in images. 

The inverse step to find a simple fractal description of a given texture is a much 
more complex task. A first success was achieved by Barnsley and Sloan [1988] and 
Barnsley [1988]. So-called iterated function systems (IFS) are used to describe complex 
patterns with a few figures. This compact code also seems to be suitable to describe 
and analyze textures. 

But more difficult questions need to be solved. We need to analyze how similar 
patterns are mapped to the IFS code to distinguish between the different textures. 
Currently, the enormous effort needed to compute the IFS-code from a given pattern 
is a big obstacle. Even on a fast workstation, it takes hours to compute the code for 
a single color image. If these problems can be solved exciting new perspectives open 
up for image processing. We also need to wait for more progress in algorithms and 
hardware before we arrive at a practical application of fractal texture analysis. 
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10.1 Introduction 

Allimage processing operations discussed so far have helped us to "recognize" objects 
of interest, i. e., to find suitable local features which allow us to distinguish them from 
other objects and from the background. The next step is to checkeachindividual pixel 
whether it belongs to an object of interest or not. This operation is called segmentation 
and produces a binary image. A pixel has the value one if it belongs to the object; 
otherwise it is zero. Segmentation is the operation at the threshold between low-level 
image processing and the operations which analyze the shape of objects, such as those 
discussed in chapter 11. In this chapter, we discuss several types of segmentation meth
ods. Basically we can think of three concepts for segmentation. Pixel-based methods 
only use the gray values ofthe individual pixels. Edge-based methods detect edges and 
then try to follow the edges. Finally, region-based methods analyze the gray values in 
larger areas. 

10.2 Pixel-Based Methods 

Point-based segmentation only takes the gray value of a pixel in order to decide whether 
it belongs to the object or not. In ordertoperform this task, we have to find the gray 
value range which characterizes the object of interest. In the following we will consider 
a simple scene with one type of object. If we have found a good feature to separate 
the object from the background, the histogram of the gray values- or more generally 
feature values- will showabimodal distribution with two distinct maxima (figure 10.1). 
Ideally, a zone will exist between the two maxima where no features exist. Then the 
histogram is zero in this range and we can place a threshold anywhere in this range 
yielding a perfect separation between object and background. 

It is the aim oflow-level image processing to achieve this ideal situation. However, we 
may fall short. It is still quite simple to handle a situation in which a non-zero minimum 
exists between two well-pronounced maxima. This can occur even when the object and 
the background have clearly distinct gray values, since intermediate gray values will 
always occur at the edges of the objects. The probability density functions for the gray 
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Figure 10.1: Idealimage for segmentation: a) image; b) histogram with bimodal gray value distribution; 
c) segmented image with the threshold indicated by the verticalline in the histogram; processed using 
OPTIMAS. 

values of the object and the background will overlap. This overlap means that some 
mis-correspondences could be unavoidable. Some object pixels will be recognized as 
background and vice versa. If we know the probability distribution for the object and 
the background pixels, we can use a statistical analysis of the decision process to find an 
optimum threshold with the minimum number of erroneous correspondences [ Rosenfeld 
and Kak, 1982). The gray value distributions of the object and the background can be 
estimated by local histograms which only include areas from either the object or the 
background. These areas must be selected manually. 

In less favorable circumstances, the histogram might not show a minimum at all, in 
which case an adequate threshold does not exist. This situation occurs, for example, in 
a scene with uneven illumination even if the object clearly juts out of the background 
(figure 10.2). The literature is full of concepts to handle such cases. We can, for 
example, compute histograms from smaller areas and use these histograms to find local 
thresholds. 

However, it is much better to solve the problern at its root, i. e., to optimize the 
illumination of the scene we observe. If this is not possible, we should try to correct 
for the uneven illumination (as discussed in section 4.3.3) before we apply a complex 
segmentation procedure. 
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Figure 10.2: Segmentation of an image with uneven illumination: a) image; b) histogram; c) segmented 
image; processed using OPTIMAS. 

10.3 Region-Based Methods 

Region-based methods focus our attention on an important aspect of the segmentation 
process we missed with point-based techniques. There we classified a pixel as an object 
pixel judging solely on its gray value independent of the context. This means that any 
isolated points or small areas could be classified as being object pixels, disregarding the 
fact that an important characteristic of an object is its connectivity. 

In this section we will not discuss such standard techniques as spilt-and-merge or 
region-growing techniques. Interested readers are referred to Rosenfeld and Kak [1982] 
or Jain [1989]. Here we point out one of the central problems of the segmentation 
process and discuss the use of pyramids in order to solve it. 

If we do not use the original image but a feature image for the segmentation process, 
the features do not represent a single pixel but a small neighborhood depending on the 
mask sizes of the operators used. At the edges of the objects, however, where the mask 
size includes pixels from both the object and the background, any feature that could 
be useful cannot be computed. The correct procedure would be to limit the mask size 
at the edge to points of either the object or the background. But how can this be 
achieved if we can only distinguish the object and the background after computation 
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of the feature? A similar problern occurs later in this book with the computation of 
displacement vector fields in image sequences (see chapter 16). 

Obviously, this problern cannot be solved in one step, but only iteratively using a 
procedure in which feature computation and segmentation are performed alternately. 
Principally, we proceed as follows. In the first step, we compute the features disregard
ing any object boundaries. Then we perform a preliminary segmentation and compute 
the features again, now using the segmentation results to limit the masks of the neigh
borhood operations at the object edges to either the object or the background pixels, 
depending on the location of the center pixel. To improve the results, we can repeat 
both steps until the procedure converges into a stable result. 

Burt [1984] suggested a pyramid-linking algorithm as an effective implementation of 
a combined segmentation feature computation algorithm. We will dernarrstrate it using 
the illustrative example of a noisy step edge (figure 10.3). In this case, the computed 
feature is simply the mean gray value. The algorithm includes the following steps: 
1. Computation of the Gaussian pyramid. As shown in figure 10.3a, the gray values of 

four neighboring pixels are averaged to form a pixel on the next higher level of the 
pyramid. This corresponds to a smoothing operation with a box filter. 

2. Segmentation by pyramid-linking. Since each pixel contributes to two pixels on the 
higher level, we can now decide to which it most likely belongs. The decision is 
simply made by comparing the gray values and choosing the pixel. The link is 
pictured in figure 10.3b by an edge connecting the two pixels. This procedure is 
repeated through all the levels of the pyramid. As a result, the links on the pyramid 
constitute a new data structure. Starting from the top of the pyramid one pixel is 
connected with several pixels on the next lower level. Such a data structure is called 
a tree in computer science. The links are called edges, the data points are the gray 
values of the pixels, and are denoted as nodes or vertices. The node at the highest 
level is called the root of the tree, the nodes which have no further links are called the 
leaves of the tree. A node linked to a node at a lower level is denoted as the father 
node of this node. Correspondingly, each node linked to a node at a higher level is 
defined as the son node of this node. 

3. Averaging of linked pixels. Next, the resulting link structure is used to recompute the 
mean gray values, now using only the linked pixels (figure 10.3c), i. e., the new gray 
value of each father node is computed as the average gray value of all the son nodes. 
This procedure starts at the lowest level and is continued through all the levels of 
the pyramid. 
The last two steps are repeated iteratively until we reach a stable result which is 

shown in figure 10.3d. An analysis of the link-tree shows the result of the segmentation 
procedure. In figure 10.3d we recognize two subtrees, which have their roots in the 
third level of the pyramid. At the next lower level, four subtrees originate. But the 
differences in the gray values at this level are significantly smaller. Thus we conclude 
that the gray value structure is obviously parted into two regions. Then we obtain the 
final result of the segmentation procedure by transferring the gray values at the roots 
of the two subtrees to the linked nodes at the lowest level. These values are shown as 
braced numbers in figure 10.3d. 

The application of the pyramid-linking segmentation algorithm to two-dimensional 
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Figure 10.3: Demonstration of the pyramid-linking segmentation procedure with a one-dimensional 
noisy edge: a) first step: Computation of the Gaussian pyramid; b) second step: node-linking: each 
node is linked with the father node at the next higher Ievel whose value is closest to the value of the 
node; c) re-computation of the mean gray values at the father nodes, now only using the linked son 
nodes; d) final result after several iterations ofsteps b) and c). The braced values indicate the regional 
means of the sub-trees with their roots in the third Ievel of the pyramid. At the lowest Ievel, these 
values represent the estimate of the noisy edge by a step-edge [Burt, 1984]. 
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Figure 10.4: Noisy images of a tank (a) and a blood cell (c) segmented with the pyramid-linking 
algorithm in two and three regions (b) and (d), respectively; after Burt [1984]. 

images is shown in figure 10.4. Both examples point out that even very noisy images 
can be successfully segmented with this procedure. There is no restriction to the form 
of the segmented area. 

The pyramid-linking procedure merges the segmentation and the computation of 
mean features for the objects extracted in an efficient way by building a tree on a pyra
mid. It is also advantageaus that we do not need to know the number of segmentation 
levels beforehand. They are contained in the structure of the tree. The tree also includes 
the correctly averaged gray or feature values for the segmented areas. Furtherdetails of 
pyramid-linking segmentation are discussed in Burt et al. [1981] and Pietikäinen and 
Rosenfeld [1981]. 

10.4 Edge-Based Methods 

Even with a perfect illumination, pixel-based segmentation may easily result in a bias 
of the size of the segmented object. Figure 10.5 illustrates how the size of the objects 
depends on the threshold level. The size variation results from the fact that the gray 
values at the edge of an object change only gradually from the background to the object 
value. No bias in the size occurs if we take the mean of the object and the background 
gray values as the threshold. However, this approach is only possible, if all objects show 
the same gray values. In case of differently bright objects and a black background, a 
bias in the size of the objects is unavoidable. Darker objects will become too small, 
brighter objects too large. 

An edge-based segmentation approach can be used to avoid a bias in the size of the 
segmented object. The position of an edge is given by an extremum of the first-order 
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a) b) 

Figure 10.5: Dependence of the size of the segmented objects on the threshold level: a) threshold = 
100 bits; b) threshold = 140 bits (original image figure 10.1a} 
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Figure 10.6: Result of edge-based segmentation of the unevenly illuminated image shown in figure 10.2; 
processed using BioScan OPTIMAS. 

derivative or a zero crossing in the second-order derivative (see section 6.2). 
Edge-based segmentation is a sequential method. The image is scanned line by 

line for, e. g., maxima in the gradient. When a maximum is encountered, a tracing 
algorithm tries to follow the maximum of the gradient around the object until it reaches 
the starting point again. Then the next maximum in the gradient is searched. As 
region-based segmentation, edge-based segmentation takes into account that an object 
is characterized by adjacent pixels. 

The image processing software OPTIMAS includes a number of different algorithms 
to trace the boundary of objects. We can trace the maximum of the gradient, an 
extremum, or a certain luminance level. Although edge-based segmentation is com
putationally more costly than a simple global threshold approach, superior results are 
gained. Figure 10.6 illustrates that it also can process unevenly illuminated images 
successfully. We could not segment this image with a global threshold (figure 10.2b ). 
Countour-following algorithms are discussed in Jain [1989]. 
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11.1 Introduction 

After the segmentation process, which we discussed in the previous chapter, we know 
which pixels belong to the object of interest. Now we can perform the next step and 
analyze the shape of the objects. This is the topic of this chapter. First we will discuss a 
dass of neighborhood operations, the morphological operators on binary images, which 
work on the form of objects. Second, we will consider the question how to represent a 
segmented object. Third, we will discuss parameters to describe the form of objects. 

11.2 Morphological Operators 

11.2.1 Neighborhood Operations on Binary Images 

In our survey of digital image processing, operators which relate pixels in a small neigh
borhood have emerged as a versatile and powerful tool for scalar and vectorial images. 
Consequently, we ask whether they might also be of use for binary images. In sec
tions 5.1.1 and 5.1.3 we discussed the two basic operations to combine neighboring 
pixels of gray value images: convolution ("weight and sum up") and rank value filtering 
("sort and select"). With binary images, we do not have much choice as to which kind 
of operations to perform. We can combine pixels only with the logical operations of 
Boolean algebra. We might introduce a binary convolution by replacing the multiplica
tion of the image and mask pixels with an and opemtion and the summation by an or 
opemtion 

R R 
c:..n = V V Mk,l" Gm-k,n-1· {11.1) 

k=-R 1=-R 

The /\ and V denote the logical and and or operation, respectively. The binary image 
G is convolved with a symmetric 2R + 1 X 2R + 1 mask M. 

What does this operation achieve? Let us assume that all the coefficients of the 
mask are set to 'one'. If one or more object pixels, i.e., 'ones', are within the mask, the 
result of the operationwill be one, otherwise it is zero (figure 11.1). Hence, the object 
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Figure 11.1: Dilation of a binary object with the binary convolution operation as defined in (11.1). 
Shown is the application of a 3 x 3 mask. 

Figure 11.2: Erosion of a binary object with a 3 X 3 mask. 

will be dilated. Small holes or cracks will be filled and the contour line will become 
smoother, as shown in figure 11.3b. The opera.tor defined by (11.1) is known as the 
dilation operator. Interestingly, we ca.n end up with the same effect if we apply rank 
value filter operations (see section 5.13) to bina.ry images. Let us take the maximum 
operator. The maximumwill then be one if one or more 'ones' are within the mask, 
just as with the binary convolution operation in (11.1). 

The minimum operator has the opposite effect. Now the result is only one if the mask 
is completely within the object (figure 11.2). In this way the object is eroded. Objects 
smaller than the mask completely disappear, objects connected only by a small bridge 
will become disconnected (figure 11.4b ). The erosion of an object can also be performed 
using binary convolution. In order to erode the object, we dilate the background: 

R R 

G~n = V V Mk,l 1\ Gm-k,n-1· (11.2) 
k=-Rl=-R 

In this equation, the image is negated to convert the background to the object and vice 
versa. The result must be negated to reverse this negation. 
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By transferring the concepts of neighborhood Operations for gray value images to 
binary images we have gained an important tool to operate on the form of objects. We 
have already seen in figures 11.1 and 11.2 that these operations can be used to fill small 
holes and cracks or to eliminate small objects. The size of the mask governs the effect 
of the operators, therefore the mask is often called the structure element. For example, 
an erosion operation works like a net which has holes in the shape of the mask. All 
objects smaller than the hole will slip through and disappear from the image. The 
operations that work on the form of objects are called morphological operators. The 
name originates from the research area of morphology which describes the form of 
objects in biology and geosciences. 

We used a rather unconventional way to introduce morphological operations. Nor
mally, these operations are defined as operations on sets of pixels. We regard G as the 
set of all the pixels of the matrix which are not zero. M is the set of the non-zero mask 
pixels. With Mp we denote the mask shifted with its reference point (generally but not 
necessarily its center) to the pixel p. Erosion is then defined as 

G 8 M = {p : Mp ~ G} (11.3) 

and dilation as 

(ll.4) 
Thesedefinitionsare equivalent to (11.1) and (11.2), respectively, except for the fact 
that the mask in the convolution operation is rotated by 180° (see section 5.1.1 ). We 
can now express the erosion of the set of pixels G by the set of pixels M as the set of 
all the pixels p for which MP is completely contained in G. In contrast, the dilation of 
G by M is the set of all the pixels for which the intersection between G and MP is not 
an empty set. Since the set theoretical approach leads to more compact and illustrative 
formulas, we will use it now. Equations (11.1) and (11.2) still constitute the basis from 
which to implement morphological operations. The erosion and dilation operator can 
be regarded as elementary morphological operators from which other more complex 
operators can be built. Their properties are studied in detail in the next section. 

11.2.2 General Properties of Morphological Operations 

Morphological operators share most of the properties we have discussed in chapter 5. 

Shift lnvariance 
Shift invariance results directly from the definition of the erosion and dilation operator 
as convolutions with binary data in (11.1) and (11.2). Using the shift operator S as 
defined in (5.24) and the operator notation, we can write the shift invariance of any 
morphological operator M as 

M e1SG) = kts (MG). (11.5) 

Principle of Superposition 
What does the Superposition principle for binary data mean? For gray value images it 
is defined as 

1i(aG + bG') = a1iG + b1iG'. (11.6) 
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The factors a and b make no sense for binary images; the addition of images corresponds 
to the union or logical or of images. The superposition principle for binary images is 
given as 

M(G U G') =(MG) U (MG') or M(G V G') =(MG) V (MG'). (11. 7) 

The operation G V G' means a point-wise logical or of the elements of the matrices 
G and G'. Generally, morphological operators arenot additive in the sense of (11.7). 
While the dilation operation meets the Superposition principle, the erosion does not. 
The erosion of the union of two objects is generally a superset of the union of two 
eroded objects: 

( G u G') 8 M 2 ( G 8 M) U ( G' 8 M) 
(G U G') ffi M (G ffi M) U (G' ffi M). 

Commutativity and Associativity 
Also morphological operators are not generally commutative: 

(11.8) 

(11.9) 

We can see that the erosion is not commutative if we take the special case that MI ::J M 2 • 

Then the erosion of M 2 by MI yields the empty set. However, both erosion and dilation 
masks consecutively applied in a cascade to the same image G are commutative: 

(G 8 MI) 8M2 = G 8 (MI ffi M2) = (G 8M2) 8 MI 
(G ffi MI) ffi M2 = G ffi (MI ffi M2) = (G ffi M2) ffi MI. 

(11.10) 

These equations are important for the implementation of morphological operations. 
Generally, the cascade operation with k structure elements Mb M2, ... , Mk is equivalent 
to the operation with the structure element M = MI ffi M2 ffi ... ffi Mk. In conclusion, 
we can decompose large structure elements in the very same way as we decomposed 
linear shift-invariant operators. An important example is the composition of separable 
structure elements by the horizontal and vertical element M =Mx ffi My. Another less 
trivial example is the build-up of large one-dimensional structure elements by structure 
elements including many zeros: 

[1 1 1 1 1 1 1 1 1] = [1 1 1] ffi [1 0 0 1 0 0 1] . (11.11) 

In this way, we can build up large structure elements with a minimum number of logical 
operations just as we built up large smoothing masks in section 6.3.3. It is more difficult 
to obtain isotropic, i. e., circular-shaped, structure elements. The problern is that the 
dilation of horizontal and vertical structure elements always results in a rectangular
shaped structure element, but not in a circular mask. A circular mask can, however, 
be approximated with one-dimensional structure elements running in more directions 
than only along the axes. Again, we can learn how to proceed from kernels for gray 
value images. If we take component kernels of the same shape, the binary structure 
element contains all the points where the corresponding kernel coefficients are non-zero. 
Thus the concepts to construct large binomial kernels discussed in section 6.3.3, espe
cially (6.61), give good approximations to construct large isotropic structure elements 
efficiently. 
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Monotony 
Erosion and dilation are monotonous operations 

Gt ~ G2 ""-+ Gt E9 M ~ G2 E9 M 
G1 ~ G2 ""-+ G1 8 M ~ G2 8 M. 

11 Shape 

(11.12) 

The monotony property means that the subset relations are invariant with respect to 
erosion and dilation. 

Distributivity 
Linear shift-invariant operators are distributive with regard to addition. The corre
sponding distributivities for erosion and dilation with respect to the union and inter
section of two images G1 and G2 are more complex: 

and 

(Gt n G2) E9 M C (Gt E9 M) n (G2 E9 M) 
(Gt n G2) 8 M (Gt 8 M) n (G2 8 M) 

(GtUG2)ffiM = (GtE9M)U(G2E9M) 
(GtUG2)8M 2 (Gt8M)U(G2eM). 

(11.13) 

(11.14) 

Erosion is distributive over the intersection operation, while dilation is distributive over 
the union operation. 

Duality 
Erosion and dilationaredual operations. By negating the binary image erosion converts 
to dilation and vice versa: 

GGM = GtJJM 
GtJJM = GeM. 

(11.15) 

In the following we willlearn about more dual pairs of morphological operators. 
The mathematical foundation of morphological operations including complete proofs 

for all the properties stated in this section can be found in the dassie book by Serra 
[1983]. 

11.2.3 Further Morphological Operations 

Using the elementary erosion and dilation operations we now develop further useful 
operations to work on the form of objects. While in the previous section 11.2.2 we 
focused on the general and theoretical aspects of morphological operations, we now 
concentrate on application. 

Opening and Closing 
The erosion operation is useful to filteroutsmall objects. According to (11.3) all objects 
0 disappear which meet the condition 

0 8 M = 0 := MP ::) 0 \lp. (11.16) 

By a proper choice of the structure element, we can eliminate objects with a certain 
form (figure 11.3a and b). However, the erosion operation shows the disadvantage that 
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Figure 11.3: Examples of morphological operations: a} original binary image; b) erosion with a 3 x 3 
mask; c} opening with a 3 x 3 mask; d} opening with a larger mask. 

all the remaining objects shrink in size. We can avoid this effect by dilation of the 
image after erosion with the same structure element. This combination of operations 
is called an opening operation 

Go M = (G 8 M) ffi M. (11.17) 

The opening sieves out objects which are smaller than the structure element, but avoids 
a general shrinking of the size (figure 11.3c, d). It is also an ideal operation to remove 
lines with a diameter that is smaller than the diameter of the structure element. 

In contrast, dilation enlarges objects and closes small holes and cracks. General 
enlargement of the object by the size of the structure element can be reversed by a 
following erosion (figure 11.4c, d). This combination of operations is called a closing 
operation 

G • M = ( G ffi M) 8 M. {11.18) 

The size change of objects with different operations may be summarized by the following 
relations: 

G 8 M ~ Go M ~ G ~ G • M ~ G ffi M. (11.19) 
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Figure 11.4: Examples ofmorphological operations: a) original binary image; b) dilation with a 3 x 3 
mask; c) closing with a 3 x 3 mask; d) closing with a !arger mask. 

Opening and closing are idempotent operations 

G•M 
GoM 

(G•M) •M 
(GoM) oM, 

(11.20) 

i. e., a second application of a closing and opening with the same structure element does 
not show any further effects. 

Object Boundary Extraction; Hit-or-Miss Operator 
So far, we only discussed operators which shrink or expand objects. Now we turn to the 
question how to extract the boundary of an object. Boundary points miss at least one of 
their neighbors. As we discussed in section 2.3.1, we can define a 4- and 8-neighborhood 
on a reetangular grid. We can remove the boundary points by eroding the object with 
a structure element which contains all the possible neighbors of the central pixel 

M= [~ ~ ~] 
1 1 1 ,______.. 

8-neighborhood 

and M = [ ~ ~ ~] 
0 1 0 ,______.. 

4-neighborhood 

(11.21) 
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Figure 11.5: Boundary extraction: a) original binary image; b) 4-connected boundary c) 8-connected 
boundary extracted with the operator (11.22); d) boundary extraction with the hit-or-miss operator. 

The boundary is then gained by the set difference (/ operator) between the object and 
the eroded object 

B = a;(a 8 M) =an (a 8 M) =an (G EB M). (11.22) 

As shown in the formula, we can also understand the set difference as the intersection 
of the object with the dilated background. It is important to note that the boundary 
line shows the dual connectivity to the connectivity of the eroded object. If we erode 
the object with the 8-neighbor structure element, the boundary is 4-connected, and vice 
versa. An example for boundary extraction is shown in figure 11.5. 

Another useful operator is the hit-or-miss operator, yet another combination of the 
erosion and dilation operator which uses different structure elements for the erosion and 
dilation operation 

a 0 M = (a 8 M1) n (a EB M2) = (a 8 MI) n (a 8M2) 
with M = M1 U M2, M1 n M2 = 0. 

(11.23) 

After the hit-or-miss operation, the object only includes those pixels p for which M 1P ~ 
a and M2p ~ a. From this condition, the requirement that M 1 and M2 must be 
disjunct becomes clear. The shape of the borderline extracted depends on the structure 
elements M 1 and M 2• 
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c) d) 
2 

6 

Figure 11.6: Boundary representation with the chain code: a) 8-connected boundary; b) 4-connected 
boundary; c) direction coding in 8-neighborhood; d) direction coding in 4-neighborhood. 

11.3 Representation of Shape 

Morphological operations work on binary images represented on a matrix. This means 
that we still store each pixel of the object and all the background pixels. We realize 
that all information about binary images can be stored in a much more compact form. 
For example, all information on the object is contained in its boundary pixels. It is 
therefore sufficient to store only the boundary pixels of an object. Obviously, this is 
a much more compact representation of a binary image. It is worthwhile studying 
whether the extraction of shape parameters or operations modifying the shape of the 
object can also be performed using this data structure. As an example, we will study the 
representation ofbinary objects with chain codes and quad-trees. This section concludes 
with some general remarks on the limitations of shape representation on discrete grids 
and show some alternatives. 

11.3.1 Chain Code 

The chain code is a data structure to represent the boundary of a binary image on a 
discrete grid in an effective way. Instead of storing the positions of all the boundary 
pixels, we select a starting pixel and store only its coordinate. If we use an algorithm 
which scans the image line by line, this will be the uppermost left pixel of the object 
(figure 11.6a and b ). Then we follow the boundary in clockwise direction. In a 4-
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a) gray value image 

originalline (hex): 12 12 12 20 20 20 20 25 27 25 20 20 20 20 20 20 

code (hex): 82 12 83 20 2 25 27 25 85 20 

b) binary image 

originalline (hex): 1 1 1 1 1 1 0 0 0 1 1 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 

code (hex): 0 6 3 3 2 1 5 8 

Figure 11.7: Demonstration ofthe run-length code: a) gray value image; b) binary image. 
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neighborhood there are 4, in an 8-neighborhood there are 8 possible directions to go 
which we ean deeode with a 3-bit or 2-bit eode as indieated in figure 11.6e and d. 

The ehain eode shows a number of obvious advantages over the matrix representation 
of a binary objeet: 
• The ehain eode is a eompaet representation of a binary objeet. Let us assume a disk

like object with a diameter of R pixels. In a direct matrix representation we need to 
store the bounding reetangle of the object, i. e., about R2 pixels whieh are stored in 
R2 bit. The bounding reetangle is the smallest reetangle enclosing the objeet. If we 
use an 8-eonnected boundary, the disk shows ab out 1r R boundary points. The ehain 
eode of the 1r R points ean be stored in ab out 37r R bit. For ob jects with a diameter 
larger than 10, the ehain eode is a more eompaet representation. 

• The ehain eode is a translation invariant representation of a binary object. This 
property makes the eomparison of objects easier. 

• Sinee the ehain eode is a eomplete representation of an objeet or eurve, we ean 
prineipally eompute any shape feature from the ehain eode. As shown below, we ean 
eompute a number of shape parameters - including the perimeter and area - more 
effieiently using the ehain-eode representation than in the matrix representation of 
the binary image. 
If the object is not eonnected or if it has holes, we need more than one ehain eode 

to represent it. We must also include the information whether the boundary surrounds 
an objeet or a hole. Reeonstruetion of the binary image from a ehain eode is an easy 
proeedure. First we might draw the outline of the object and then use a filZ operation 
to paint it. 

11.3.2 Run-length Code 

Another eompact representation of a binary image is the run-length code. A binary 
image is seanned line by line. If a line eontains a sequenee of p equal pixels, we do 
not store p times the same figure, but store the value of the pixel and indieate that it 



210 11 Shape 

a) b) 

Figure 11.8: Representation of a binary image by a region quadtree: a) successive subdivision of the 
binary array into quadrants; b) the corresponding region quadtree. 

occurs p times (figure 11.7). In this way large uniform line segments can be stored in a 
very efficient way. For binary images, the code can be especially efficient since we have 
only the two pixel values zero and one. Since a sequence of zeros is always followed by 
a sequence of ones, there is no need to store the pixel value. We only need to store the 
number of times a pixel value occurs (figure 11.7b). 

We must be careful, however, at the beginning of a line since it may begin with a 
one or a zero. This problern can be resolved if we assume a line to begin with zero. If 
a line should start with a sequence of ones, we start the run-length code with a zero to 
indicate that the line begins with a sequence of zero zeros ( figure 11. 7b). Run-length 
code is suitable for compact storage of images. It has become an integral part of several 
standard image formats, for example, the TGA or the TIFF formats. Run-length code 
is, however, not very useful for direct processing of images, because it is not object 
oriented. As a result, run-length encoding is only useful for compact image storage. 
Not all types of images can be successfully compressed. Digitized gray-value images, 
for example, always contain some noise so that the probability for sufficiently long 
sequences of pixels with the same gray value is very low. High data reduction factors, 
however, can be achieved with binary images and many types of computer-generated 
gray-value and color images. 

11.3.3 Quadtrees 

The run-length and chain codes discussed in the last two sections are line- or boundary
oriented representations of binary images. Thus they decode one-dimensional rather 
than two-dimensional data. In contrast, quadtrees are based on the principle of recursive 
decomposition of space, as illustrated in figure 11.8. 

First, the whole image is decomposed into four equal-sized quadrants. If one of 
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the quadrants does not contain a uniform region, i. e., the quadrant is not included 
entirely in the object or background, it is again subdivided into four subquadrants. 
The decomposition stops if only uniform quadrants are encountered or if the quadrants 
contain only one pixel. 

The recursive decomposition can be represented in a tree ( figure 11.8b). At the top 
level of the tree, known as the root, the decomposition starts. The root corresponds to 
the entire binary image. It is connected via four edges to four son nodes which represent 
from left to right the NW, NE, SW, and SE quadrants. If a quadrant needs no further 
subdivision, it is represented by a terminal or leaf node in the tree. It is called black 
when the quadrant belongs to an object and white otherwise and indicated by a filled 
and open square, respectively. Nonleaf nodes require further subdivision and are said 
tobe gray and are shown as open circles (figure 11.8b). 

Quadtrees can be encoded, for example, by a depth-first traversal of the tree starting 
at the root. It is only required to store the type of the node with the symbols b (black), 
w (white), and g (gray). Westart the code with the value of the root node. Then we 
list the values of the child nodes from left to right. Each time we encounter a gray node, 
we continue encoding at one level lower in the tree. This rule is applied recursively. 
This means that we return to a higher level in the tree only after the visited branch 
is completely encoded down to the lowest level. This is why this encoding is known as 
depth-first. 

The example quadtree shown in figure 11.8b results in the code 

ggwwgwwwbbwggwbwbbwgwbwwgbwgbbwww. 

The code becomes more readable if we include a left parenthesis each time we descend 
one level in the tree and a right parenthesis when we aseend again 

g(g( wwg( wwwb)b)wg(g( wbwb)bwg( wbww) )g(bwg(bbww )w) ). 

However, the code is unique without the parentheses. A quadtree is a compact repre
sentation of a binary image if it contains many leaf nodes at high levels. However, in the 
worst case, for example a regular checkerboard pattern, allleaf nodes are at the lowest 
level. The quadtree then contains as many leaf nodes as pixels and requires much more 
bytes of storage space than the direct representation of the binary image as a matrix. 

The region quadtree discussed here is only one of the many possibilities for recursive 
spatial decomposition. An extensive discussion of quadtrees is given by Samet [1990a]. 
Three-dimensional binary images can be recursively decomposed in a similar way. The 
3-D image is subdivided into eight equally sized octants. The resulting data structure 
is called a region octree. Quadtrees and octrees have gained significant importance in 
geographic information systems and computer graphics. An overview of applications is 
given by Samet [1990b]. 

Quadtrees are a more adequate encoding technique for images than the line-oriented 
run-length code. However, it is rather difficult to perform shape analysis directly on 
quadtrees. Without going into further details this can be seen from the simple fact that 
an object shifted by one pixel in any direction results in a completely different quadtree. 
From the codes discussed so far, the object-oriented and translation-invariant chain code 
seems to be best for shape analysis and comparison. 
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11.4 Shape Parameters 

After the discussion of the different possibilities to represent binary objects extracted 
from image data, we now turn to the question as to how describe the shape of these 
objects with simple but adequate parameters. This section describes a nurober of 
shape parameters from rather trivial ones such as area and perimeter to sophisticated 
descriptions based on moments or the Fourier transform of object boundaries. 

The parameters described in this section are illustrated by BioScan OPTIMAS, a 
Windows-based J>C image processing software which contains a rich collection of shape 
parameters and a powerful but easy-to-use object data collection tool. OPTIMAS 
distinguishes three classes of objects: points, lines, and areas. Here we deal only with 
the latter. After image segmentation, the software can compute object parameters 
in two different modes. In the single object mode, individual objects can be selected 
interactively using a pointing device. The parameters selected can then be displayed in 
so-called view boxes in graphical or numerical form and they can be exported to a data 
file or via dynamic data exchange (DDE, Microsoft Windows' communication protocol) 
to other concurrently running programs. 

In the multiple object mode, the selected shape parameters are automatically ex
tracted from all objects of an image. In this way, a fully automated object analysis can 
be performed. In the following, the OPTIMAS names for the different parameters are 
written in Courier letters. 

11.4.1 Simple Geometrie Parameters 

Area (ArArea) 
The most trivial shape parameter is the area A of an object. In a digital binary image 
the area is given by the nurober of pixels that belong to the image. In the matrix 
or pixellist representation of the object, area computing simply means counting the 
nurober of pixels. 

At first glance, area computation of an object which is described by its chain-code 
seems to be a complex operation. However, the contrary is true. Computation of the 
area from the chain code is much faster than counting pixels since the boundary of 
the object contains only a small fraction of the object's pixels and requires only two 
additions per boundary pixel. 

The algorithm works in a similar way as numerical integration. We assume a hori
zontal base line drawn at an arbitrary vertical position in the image. Then we start the 
integration of the area at the uppermost pixel of the object. The distance of this point 
to the base line is B. We follow the boundary of the object and increment the area of 
the object according to the figures in table 11.1. If we, for example, move to the right 
( chain code 0), the area increases by B. If we move upwards to the right ( chain code 1), 
the area also increases by B, but B must be incremented, since the distance between 
the boundary pixel and the base line has increased. For all movements to the left, the 
area is decreased by B. In this way, we subtract the area between the lower boundary 
line of the object and the base line, which was included in the area computation when 
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Table 11.1: Computation of the area of an object from the contour code. Initially, the area is set to 
zero. With each step, the area and the parameterB are incremented corresponding to the value of the 
contour code; after Zamperoni [1989]. 

rl -;:C:-o-n.,...to_u_r_c_o_d"""e-.-1 -,A-r-ea--:-in_c_r_e_m_e_n.,..t'I--;I:-n-c-re_m_e_n.,..t.,..o-f"B~i 

0 
1 
2 
3 
4 
5 
6 
7 

moving to the right. 

Perimeter (ArPerimeter) 

+B 
+B 
0 

-B 
-B 
-B 
0 

+B 

0 
1 
1 
1 
0 
-1 
-1 
-1 

The perimeter is another geometrical parameter, which can easily be obtained from 
the chain code of the object boundary. We just need to count the length of the chain 
code and take into consideration that steps in diagonal directions are by a factor of .../2 
longer. The perimeter p is then given by an 8-neighborhood chain code: 

(11.24) 

where ne and n0 are the number of even and odd chain code steps, respectively. In 
contrast to the area, the perimeter is a parameter which is sensitive to the noise level in 
the image. The more noisy the image, the more rugged and thus longer the boundary 
of an object will become in the segmentation procedure. This means that care must be 
taken in comparing perimeters which have been extracted from different images. We 
must be sure that the smoothness of the boundaries in both images is comparable. 

Circularity (ArCircularity) 

Area and perimeter are two parameters which describe the size of an object in one or 
the other way. In order to compare objects which are observed from different distances, 
it is important to use shape parameters which do not depend on the size of the object 
on the image plane. The circularity c is one of the simplest parameters of this kind. It 
is defined as 

(11.25) 

The circularity is a dimensionless number with a minimum value of 47r ~ 12.57 for 
circles. The circularity is 16 for a square and 12/3 ~ 20.8 for an equilateral triangle. 
Generally, it shows large values for elongated objects. 

Area, perimeter, and circularity are shape parameters which do not depend on the 
orientation of the objects on the image plane. Thus they are useful to distinguish 
objects independent of their orientation. We will show an example how to use these 
simple shape parameters for object classification in section 12.5. 
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11.4.2 Moment-based Shape Features 

Definitions 
We could continue to define more parameters like those discussed above, but we will 
gain more insight into the description of shape by a more systematic approach. In this 
chapter we will first define moments for gray value and binary images and then show 
how to extract useful shape parameters from this approach. We will discuss Fourier 
descriptors in a similar manner in the next section. 

We have used moments in section 4.2.1 to describe the probability density function 
for gray values. Here we extend this description to two dimensions and define the 
moments of the gray value function g(z) of an object as 

(11.26) 

where 

(11.27) 

The integration includes the area of the object. Instead of the gray value, we may 
use more generally any pixel-based feature to compute object moments. The vector 
(z} = ((x1}, (x2}) is called the center of mass (ArCenterOfMass) of the object in 
analogy to classical mechanics. (Think of g( z) as the density p( z) of the object; then 
the zero-order moment m0 ,0 becomes the total mass of the object.) 

All the moments defined in (11.26) are related to the center of mass. Therefore 
they are often denoted as central moments. Central moments are invariants under a 
translation of the coordinates and thus are useful features to describe the shape of 
objects. 

For discrete binary images, the moment calculation reduces to 

(11.28) 

The summations include all pixels belonging to the object. For the description of object 
shape we may either use moments based on binary or feature images. 

Normalized Moments 
Often it is necessary to use shape parameters which do not depend on the size of the 
object. This is always required if objects must be compared which are observed from 
different distances. Moments can be normalized in the following way to obtain seale
invariant shape parameters. If we scale an ob ject g( z) by a factor of a, g' ( z) = g( z Ja), 
its moments are scaled by 

m' = d'+q+2 m . p,q p,q 

We can then normalize the moments with the zero-order moment, m0,0 , to gain seale
invariant moments 

- mp,q 
m = m(p+q+2)/2. 

0,0 

Since the zero-order moment of a binary object gives the area of the object {11.28), 
the normalized moments are scaled by the area of the object. 
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Figure 11.9: Principal axes of the inertia tensor of an object for rotation around the center of mass. 

Object Orientation; the Inertia Tensor 
Shape analysis starts with the second-order moments. The zero order moment just gives 
the area or "total mass" of a binary or gray value object, respectively. The first-order 
central moments are, by definition, zero. 

The analogy to mechanics is again helpful to understand the meaning of the second
order moments m 2,0, m 0,2, and m 1,1. They contain terms in which the gray value 
function, i. e., the density of the object, is multiplied by squared distances from the 
center of mass. Exactly the same terms arealso included in the inertia tensor which has 
been discussed in section 7.3 (see (7.16) and (7.17)). The three second-order moments 
form the components of the inerlia tensor for rotation of the object around its center 
of mass: 

J = [ mo,2 -m1,1 ] . 
-ml,l m2,o 

(11.29) 

Because of this analogy, we can transfer all the results from section 7.3 to shape de
scription with second-order moments. The orientation of the object is defined as the 
angle between the x axis and the axis around which the object can be rotated with min
imum inertia. The object is most elongated in this direction (figure 11.9). According 
to (7.24), this angle is given by 

1 2ml,l 
ifJ = - arctan -----'--

2 m2,o- mo,2 
(11.30) 

As a measure for the eccentricity c:, we can use what we have defined as a coherence 
measure for local orientation (7.34): 

(m2,o- mo,2) 2 + 4mi,1 c: - ~~----~--~~~ 

- (m2,o + mo,2)2 · 
(11.31) 

The eccentricity ranges from 0 to 1. It is zero for a circular object and one for a 
line-shaped object. Shape description by second-order moments essentially models the 
object as an ellipse. 



216 11 Shape 

Once the orientation of an object is known, we can draw a box around it which 
is aligned with the principal axes and just large enough to contain all object pixels. 
This box is known as the bounding reetangle of an object. The width and height of the 
bounding reetangle are two other orientation-independent parameters to describe the 
shape of an object. 

11.4.3 Fourier Descriptors 

Cartesian Fourier Descriptors (ArFDCartesian) 
The description of the object shape by moments is related to the area because it uses 
all pixels within the objects. Since the shape of an object is entirely described by its 
boundary, an alternative possibility for shape analysis, the Fourier descriptors, use only 
the boundary of the object. This approach has the advantage that it requires much less 
computational effort. 

We can consider the boundary as a pair of cyclic waveforms, x(p) and y(p), which 
provides a parametric description of the boundary trace. The parameter p is then the 
path length of the boundary line computed from the starting to the current point. 
Sampling of x(p) and y(p) results in equidistant points around the area perimeter of 
the object. The two sampled waveforms z and y are vectors with M samples and can 
be combined into one complex vector l = z + iy which gives a complete description of 
the sampled boundary trace. The coefficients of the discrete Fourier transform of this 
complex vector, 

• 1 M-I ( 27ri mu) 
Zu = M 2.: lm exp - --x:r- , 

m=O 

(11.32) 

are known as the Cartesian Fourier descriptors of the boundary. The first coefficient, 

. 1 M-1 1 M-1 

lo = M L Xm +iM L Ym, 
m=O m=O 

(11.33) 

gives the "mean vertex" of the object's boundary, the so-called centroid (ArCentroid). 
With increasing index, i. e., wave number, the Fourier descriptors give more and more 
fine details of the boundary. 

Polar Fourier Descriptors (ArFDPolar) 
An alternative approach uses another parameterization of the boundary line. Here the 
angle () between the radius drawn from the centroid to a point on the boundary and 
the x axis is used. This means that we directly describe the radius of the object as a 
function of the angle. Now we need only a real-valued sequence, r, with M equiangular 
samples to describe the boundary. The coefficients of the discrete Fourier transform of 
this sequence, 

{11.34) 

are known as the polar Fourier descriptors of the boundary. Here, the first coefficient, 
fo is equal to the mean radius. Although conceptually more comprehensive, the polar 
Fourier descriptors cannot be used for all types of boundaries. The radial boundary 
parameterization r( B) must be single-valued. 
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lnvariants 
The Fourier descriptors give a complete and flexible description of the shape of an 
object which can be made translation, rotation, and scale invariant. Using the basic 
properties of the discrete Fourier transform (see appendix A.3), we can easily derive 
invariant descriptions. 

All Fourier descriptors, except for l0 which gives the centroid of the object, are 
translation invariant. If we scale an object by a factor of a, the Fourier descriptors 
are multiplied by the same (real-valued) factor. Therefore the ratios of the Fourier 
descriptors of two similar objects are a real-valued constant which is equal to the size 
ratio. If an object is rotated by an angle 0, the Fourier descriptors are multiplied by a 
phase factor. We can recognize a rotated copy of an object from the fact that the ratio 
of the Fourier descriptors is a complex number with unit magnitude. In other words, 
their power spectra, Ii" 12 , are identical. 

Symmetry 
Fourier descriptors are also well suited to detect symmetries of objects. If an object 
can be rotated around its centroid by an angle of 211" /n without changing shape, it is 
said to have an n-fold symmetry. It is rotational symmetric if it can be rotated by any 
angle without changing shape. A rotational symmetric object is a circle. Consequently 
all polar Fourier descriptors except for f-0 are equal to zero. 

The boundary of an object with n-fold symmetry shows a pattern which repeats n 
times. Consequently, only the Fourier descriptors with the indices u = pn, p = 1, 2, ... 
are unequal to zero. Thus the quantity 

U/n 

l::lrunl 
Sn= 

u=l 
u (11.35) 

L:lr"l 
u=l 

is a good measure for n-fold symmetry. It is equal to one if the object has n-fold 
symmetry. As indicated, the sum includes not all M Fourier descriptors but only U 
since the high-order Fourier descriptors may be corrupted by noise. Figure 11.10 shows 
several objects and their Fourier descriptors for illustration. 
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Figure 11.10: Some examples of shape analysis by Fourier descriptors. 
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12.1 lntroduction 

When objects are detected with suitable operators and their shape is described (see 
chapter 11 ), image processing has reached its goal for some applications. For other 
applications, further tasks remain to be solved. In this introduction we explore several 
examples which illustrate how the image processing tasks depend on the questions we 
pose. 

In many image processing applications, the size and shape of particles such as bub
bles, dust particles, drops, or cell nuclei must be analyzed. From such images we want 
to analyze the probability with which those particles occur depending upon their diam
eter and other external parameters. In this case, the parameters of interest are clearly 
defined and directly measurable. We determine the area and the position of each par
ticle detected with the methods discussed in section 11.4 (figure 12.lc). Knowing the 
diameter and position of the bubbles allows all the questions of interest tobe answered. 
From the data collected, we can, for example, compute histograms of the particle area 
(figure 12.ld). This example is typical for a wide dass of scientific applications. Param
eters of the objects which can be gained directly and unambiguously from the image 
data help to answer the scientific questions asked. 

However, in many other applications, the relationship between the parameters of 
interest and the image data is much less evident. Furthermore, we are interested in 
separating the observed objects into different classes. This is in clear contrast to our 
previous example, where the diameter of the bubbles showed a continuous parameter 
space. 

"Waldsterben" (large-scale forest darnage by acid rain and other environmental pol
lution) is one of the many large problems with which environmental scientists are faced. 
In remote sensing, the task is to map and classify the extent of the darnage in forests 
from aerial and satellite imagery. In this example, the relationship between the different 
classes of darnage and features in the images is less evident. Detailed investigations are 
necessary to reveal these complex relationships. Aerialimages must be compared with 
ground truth data. We can expect to need more than one feature to identify certain 
classes of forest damage. 

There are many similar applications in medical and biological science. One of the 
standard questions in medicine is to distinguish between "healthy" and "ill". Again, it 
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Figure 12.1: Illustration of the steps to analyze the size distribution of particles: a) original image; b) 
binary image; c) particle area distribution. 

is obvious that we cannot expect a simple relationship between these two object classes 
and features of the observed objects in the images. 

Summing up these two examples, we see that two tasks must be performed: 
• First, the relation between the image features and the object classes sought must 

be investigated in as much detail as possible. This topic is partly comprised in the 
corresponding scientific area and partly in image formation, i. e., optics, as discussed 
in section 2.2. 

• From the multitude of possible image features, we must select an optimal set which 
allows us to distinguish the different object classes unanimously and with as few 
errors as possible. This task, known as classification, is the topic of this chapter and 
is incorporated in the more general research area of pattern recognition. 

Another aspect of classification is of interest to science. Often, the phenomena 
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observed in images are not very well known. Analysis of the features of the observed 
objects may give some new insight into the phenomena observed. Actually, there are a 
number of examples where unexpected features were found in satellite or aerial imagery 
and which led to scientific discoveries. One such example has already been discussed 
in section 1.2.1 (figure 1.1 ). Scientists were first puzzled by the strong variations of 
the radar backscatter in correlation to the bottom topography in the imagery, knowing 
that microwaves do not penetrate the water surface and thus cannot image the bottom 
topography directly. It took some time to find out that a complex chain of interactions 
finally leads to the influence of the bottom topography on the small scale waves on the 
ocean surface which govern the backscatter of microwaves. 

12.2 Feature Space; Clusters 

Let us assume a well-defined dass of objects. In satellite imagery this might be forests, 
inshore waters, agricultural or populated areas. Object dasses may also be organized 
in a hierarchical manner. We might denote agricultural areas according to the crop 
planted and even separate them further by the quality of the crop such as ripeness, 
darnage by parasites, or humidity of the soil. 

Furthermore, let us assume that a set of P features has been extracted from the 
imagery. Thesefeatures may either be pixel- or object-based. In the pixel-based case, 
it is often not possible to perform a segmentation with a single feature. Then we 
need more than one feature for each pixel to separate different classes of objects from 
each other and from the background. In the object-based dassification, the objects 
could already be separated from the background. Then all the previously pixel-based 
features such as the mean gray value, local orientation, local wave number, and gray 
value variance can be averaged over the whole area of the object. Furthermore, we can 
use all parameters describing the shape of the objects as discussed in section 11.4. 

Thus a classification can be performed at two different stages in image processing: 
• Pixel-based classification in complex cases, where a segmentation of the objects is not 

possible with a single feature. 
• Object-based classification to separate objects into different dasses. 
If at all possible, the latter case is preferable, since much less data must be handled; 
that is only one set of P features for each ob ject detected. 

The set of P features form a P-dimensional space, denoted as the feature space. 
Each pixel or object is represented as a feature vector in this space. If the features 
represent an object dass well, all feature vectors of the objects from this dass should 
lie dose to each other in the feature space. We regard dassification as a statistical 
process and assign a P-dimensional probability density function to each object dass. 
In this sense, we can estimate this probability function by taking a probe of objects from 
a given dass and increment the point in the discrete feature space in which the feature 
vector is pointing. This procedure isthat of a generalized P-dimensional histogram (see 
section 4.2.3). When an object dass shows a narrow probability distribution in the 
feature space, we speak of a cluster. It will be possible to separate the objects into the 
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a) b) 

Figure 12.2: Schematic presentation of a two-dimensional feature space with four object classes: 
a) well separated object classes; b) overlapping object classes. 

given object classes if the clusters for the different object classes are well separated from 
each other, as schematically illustrated in figure 12.2a. With less suitable features, the 
clusters overlap each other (figure 12.2b ). In this case, an error-free classification is not 
possible. 

We can regard the classification problern as an analysis of the structure of the feature 
space. One object is thought of as a pattern in the feature space. Generally, we can 
distinguish between supervised and unsupervised classification procedures. Supervision 
of a classification procedure means determining the clusters in the feature space with 
known objects beforehand. Then we know the number of classes and their location 
and extension in the feature space. With unsupervised classification, no knowledge is 
presumed about the objects to be classified. We compute the patterns in the feature 
space from the objects we want to classify and then perform an analysis of the clusters in 
the feature space. In this case, we even do not know the number of classes beforehand. 
They result from the number of well-separated clusters in the feature space. Obviously, 
this method is more objective, but it may result in a less favorable separation. 

Finally, we speak of learning methods if the feature space is updated by each new 
object which is classified. Learning methods can compensate any temporal trends in 
the object features. Such trends may be due to simple reasons such as changes in the 
illumination which could easily occur in an industrial environment because of changes 
in daylight, ageing or dirtying of the illumination system. 
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a) b) 

Figure 12.3: a) One-dimensional feature space with three object classes. b) Extension of the feature 
space with a second feature. The same object classes are shown. 

12.3 Feature Selection; Principal-Axes Transform 

The quality of the features is critical for a good dassification. What does this mean? 
At first glance, we might think that as many features as possible would be the best 
solution. Generally, this is not the case. Figure 12.3a shows a one-dimensional feature 
space with three object dasses. The features of the first and second dass are separated, 
while those of the second and third dass overlap considerably. A second feature does 
not necessarily improve the dassification, as demonstrated in figure 12.3b. The dusters 
of the second and third dass arestill overlaid. A doser examination of the distribution 
in the feature space explains why: the second feature does not tell us much new. When 
feature one is low, feature two is low as well. The two features are correlated. 

From this observation we draw the condusion that we must choose the object fea
tures very carefully. Each feature should bring in new information which is orthogonal 
to what we already know about the object dasses, i. e., object dasses which show a 
similar distribution in one feature should differ in another feature. In other words, the 
features should be uncorrelated. The correlation of features can be studied with the 
statistical methods discussed in section 4.5.2. 

The important quantity is the cross covariance of two features mk and m1 ( 4.34) 

(12.1) 

The cross-covariance is zero if both features are uncorrelated. With P features, we can 
form a symmetric matrix with the coefficients Ckt, the covariance matrix 

Cu c12 Cl,P 

C= 
c12 c22 C2,P 

(12.2) 

Cl,P C2,P CP,P 
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The diagonal elements of the covariance matrix contain the variances of the P features, 
while the off-diagonal elements constitute the cross-covariances. As in every symmetric 
matrix, the covariance matrix can be diagonalized ( compare our discussion on the inertia 
tensor in section 7.3.2). This procedure is called the principal-axes transform. It means 
that we can find a new coordinate system in which all features are uncorrelated. Those 
new features are linear combinations of the old features and are the eigenvectors of 
the covariance matrix. The corresponding eigenvalues are the variances. The best 
features show the largest variance; features with low variances are not of much help in 
separating different object dasses and can be omitted without making the dassification 
significantly worse. 

A trivial, but illustrative example is the case when two features are nearly identical. 
Let us first assume that they are equal. Then the two rows in the covariance matrix are 
equal. The determinant of the matrix is zero and thus at least one eigenvalue equals 
zero. The corresponding eigenvector is the difference vector between the two features, 
since the variance of the difference of two equal features vanishes. In a similar train 
of thought we can argue for two very similar features. The difference between the two 
features will show a very small variance. If all other features are more distinct, the 
difference between the two features will be dose to an eigenvector with the smallest 
eigenvalue (variance). 

In this way we can use the principal-axes transform to reduce the dimension of the 
feature space and find a smaller set offeatures which does nearly as good ajob. To avoid 
misunderstandings, the principal-axes transform cannot improve the separation quality. 
If a set of features cannot separate two dasses, the same feature set transformed to the 
principal-axes coordinate systemwill not do it either. Given a set of features, we can 
only find an optimal subset and thus reduce the computational costs of dassification. 

Another principal consideration is worth mentioning. It is often overlooked how 
many different dasses can be separated with a few parameters. Let us assume that 
one feature can only separate two dasses. Then ten features can separate 210 = 1024 
object dasses. This simple example illustrates the high separation potential of just a 
few parameters. The essential problern is the even distribution of the dusters in the 
feature space. Consequently, it is important to find the right features, i. e., to study the 
relationship between the features of the objects and those in the images very carefully. 
The principal-axes transform will be very helpful in removing any unnecessary features. 

Even if we take the best features available there may be dasses which cannot be 
separated. In such a case it is always worth reminding ourselves that separating the 
objects in well-defined dasses is only a model of reality. Often the transition from one 
dass to another may not be abrupt but rather gradual. For example, anomalies in a cell 
may be present to a varying degree, there not being two distinct dasses, "normal" and 
"pathological", but rather a continuous transition between the two. Thus we cannot 
expect to always find weil separated dasses in the feature space. 

In another important application, optical character recognition, or OCR, we do have 
distinct dasses. Each letter is a well-defined dass. While it is easy to distinguish most 
letters, some such asthelarge '0' and the figure '0', or the letters 'b' and 'p' are very 
similar, i. e., lie dose to each other in the feature space. Such similar but distinct dasses 
cause serious problems. 
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a) b) 

Figure 12.4: Classification according to the box method: a) with orthogonal features; b) with correlated 
features. 

12.4 Classification Techniques 

In this section we study the different dassification methods. For a more detailed dis
cussion we refer to Niemann [1981]. We assume that the dasses and their distribution 
in the feature space are known (supervised dassification). 

The simplest dassification method is the look-up method. In this case, we attribute 
a number indicating the object dass to each point in the discrete feature space. This 
approach is difficult only if the distributions of two dasses overlap. In this case we 
have two choices. First, we could take the dass which shows the higher probability at 
this point. Second, we could argue that an error-free dassification is not possible with 
this feature and give it the attribute zero indicating that we cannot dassify an object 
with this feature. The same attribute is given to all the points in the feature space 
which do not belong to any object dass. After this procedure known as labeling, we 
just have to look up which dass a feature vector belongs to. We regard the feature 
space as a multidimensional look-up table. Without doubt, this method is best with 
respect to the computing time. However, concerning the memory needed to store the 
feature space it is not so advantageous. A three-dimensional 64 x 64 x 64 feature space 
already requires 1/4 Mbyte memory. Consequently, the look-up method is only feasible 
for low-dimensional feature spaces. 

All other dassification methods model the pattern dasses in the feature space to 
reduce storage requirements. The box method approximates a dass by a surrounding 
box. Figure 12.4a illustrates that this approximation works well if the features are 
orthogonal. The box method results in a poor approximation with correlated features 
(figure 12.4b). Then the boxes are much larger than the dusters and may overlay each 
other although the dusters themselves may be very well separated. The box method 
is also very fast, since only comparison operations with the components of the feature 
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Figure 12.5: Classification according to the minimum distance method. 

coordinates are necessary to check in which box a feature vector is located. The method 
also requires that all boxes representing the different classes are disjunct. 

If this is not the case, we need to use other methods. An object dass in feature space 
can also be represented by its center of mass. If the standard deviations of the dusters 
are about the same, we can use the minimum distance method to determine which dass 
a feature vector belongs to. We compute the distance of the feature vector to all duster 
centers and choose the dass which has the minimum distance. Geometrically, we part 
the feature space by hyperplanes which meet the lines connecting the centers of gravity 
perpendicularly half way (figure 12.5). 

Finally, we might approximate each pattern class in the P-dimensional feature space 
by a P-dimensional normal probability function. For each of the object classes, we 
then compute the probability that a given feature belongs to it and choose the dass 
which shows the maximum probability for this feature. This approach is known as the 
maximum probability method. It also allows us to compute the statistical significances 
with which we attribute the feature vector to one or another dass. 

12.5 Application 

In conclusion of this chapter, we discuss a realistic classification problem. Fig
ure 12.7a shows the image with three different seeds, namely sunflower seeds, lentils, 
and peppercorns. This simple example shows many properties which are typical for a 
dassification problem. Although the three dasses are well defined, a careful considera
tion of the features to be used for classification is necessary since it is not immediately 
evident which parameters can be successfully used to distinguish between the three 
dasses. Furthermore, the shape of the seeds, especially of the sunflower seeds shows 
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Figure 12.6: A segmented image containing three classes of seeds, lentils, sunflower seeds, and pep
percorns. The detected object boundaries based on a simple pixel-based threshold segmentation are 
marked black. Processed with BioScan OPTIMAS. 

Table 12.1: Parametersand results of the simple box classification for the seeds shown in figure 12.7. 
The corresponding t: · h · F" 12 8 eature space IS s own m 1gure . . 

Area Circularity Number 
total - - 130 
peppercorns 0.1-1.0 < 15.0 23 
lentils 1.0-2.0 < 14.6 66 
sunflower seeds > 1.5 14.6-20.0 18 
not classified 23 

considerable fluctuations. 
As a. first feature we consider the a.rea. Obviously, the lentils are larger than the 

peppercorns but compara.ble in size with the sunflower seeds. Consequently, the area 
alone is not sufficient to separate the three classes. We arrive at a similar conclusion if 
we consider the circularity (see section ll.4). We will probably only separate the more 
elongated sunflower seeds from the circular peppercorns and lentils. 

Using both para.meters, area and circularity, we can separate all the three classes. 
We observe two clusters in the lower left of the feature space which correspond to the 
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Figure 12.7: Sameimage as in figure 12.6 after classification. The boundaries of the classified objects 
are labeled (L: lentils, S: sunflower seeds, and K: peppercorns). Processed with BioScan OPTIMAS. 

peppercorns and the lentils (figure 12.8). Because of the larger fluctuations in the 
shape of the sunflower seeds, we do not recognize a similar duster for them. A simple 
box dassification is sufficient to separate the three dasses. The boxes are marked in 
figure 12.8. OPTIMAS allows to write down the rules for dass membership in a powerful 
macro language. The conditions for the box dassification shown in table 12.1 read as 
Peppercorns: ArArea > 0.1 && ArArea < 1.0 tt ArCircularity < 15.0 
Lentils: ArArea > 1.0 && ArArea < 2.0 && ArCircularity < 14.6 
Sunflower seeds: ArArea > 1.5 tt ArCircularity > 14.6 && ArCircularity < 20.0 

The result of the dassification is shown in figure 12.7 and table 12.1. The bound
aries of the dassified objects are highlighted and the objects are marked with a letter 
indicating the dass membership. From a total of 130 objects, 107 objects could be 
recognized. Objects which do not belong to any dass are shown with a black boundary. 
They could not be assigned to any of the three dasses, because of one of the following 
reasons: 
• Two or more objects were so dose to each other that they merged into one object. 

Then both the area and the circularity show high values. 
• The object was located at the edge of the image and thus was only partly visible. 
• The object was a small dirt partide or a hole in another object. 

Although we chose a simple dassification method, the results are satisfying. After 
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Figure 12.8: Feature space for the classification of the different types of seeds from figure 12.7a. The 
feature space is spanned by the features area and circularity. 

classification, we can interactively select objects to check for their parameters. Fig
ure 12.9 shows a selected object, the merger of two lentils, and the corresponding fea
tures area and circularity in view boxes. It has about twice the circularity of a circular 
object. 
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Figure 12.9: Interactive display of the features of a selected object in view boxes: a) selected object; 
b) viewboxes on the Windows screen. Processed with BioScan OPTIMAS. 



13 Reconstruction from Projections 

13.1 Introduction 

In chapter 2 we discussed in detail how a discrete two-dimensional image is formed 
from a three-dimensional scene by an optical system. In this chapter we discuss the 
inverse process, the reconstruction of a three-dimensional scene from two-dimensional 
projections. Reconstruction from only one projection is an underdetermined inverse 
problern which generally shows an infinite number of solutions. As an illustration, 
figure 13.1 shows the perspective projection of a bar onto an image plane. We will 
obtain identical projections at the image plane, whenever the endpoints of a bar lie on 
the same projection beams. Even if the bar shows a curvature in the projection plane, 
we will still see a straight line at the image plane. 

In order to gain the third dimension, we need additional information. In this intro
duction we will first summarize the many sources from which we can infer depth infor
mation. From the research on the reconstruction problern different key areas emerged 
and are denoted as structure from ... paradigms. 

Structure from Stereo 
The human visual system perceives depth by observation with two eyes. Thus it seems 
quite natural to imitate this property of the biological visual systems with a stereo 

Figure 13.1: Ambiguities of the perspective projection of a bar onto an image plane. 
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camera setup. As discussed in section 2.2.9, we can infer the depth of an object point 
from its displacement (parallax) between the two images. This method only works if a 
singleopaque surface is projected onto the imageplane but no Ionger if the intensity on 
the imageplane is composed of projections from many transparent objects. Although 
this is a severe restriction, it does not restriet the reconstruction of natural scenes 
significantly, since most scenes contain only non-transparent surfaces. 

Structure from Projections 
Scenes which contain true three-dimensional objects and not just nontransparent sur
faces are common in scientific applications. They include tomographic techniques as 
discussed in section 2.2.10, focus series (section 2.2.5), and series of cross sectional im
ages (section 2.2.8). Common to all these techniques is the fact that they take a large 
number of images. In tomographic applications, projections are taken from many dif
ferent directions to reconstruct the three-dimensional structure of the observed object. 

Structure from Shape 
In section 1.3 we were already faced with the astonishing capability of the human 
visual system to recognize the three-dimensional shapes (figure 1.5). This approach to 
the reconstruction problern is called structure from shape. It can only be successful if 
an enormous amount of knowledge about geometrical shapes is available which can be 
used to evaluate the newly experienced perception. 

Structure from Shading 
The brightness of a surface depends on its orientation with respect to the illumina
tion and the observer, as discussed in section 2.1. Generally, edges of an object show 
up as brightness discontinuities. If the illumination of a scene is uniform, constant 
brightness can be found if the object surfaces are ßat. Gradually changing brightness 
indicates curved surfaces. It is easy to recognize cylindrical and spherical surfaces (see 
also plates 3 and 6a). So far, the qualitative reasoning sounds promising. A more 
quantitative analysis, however, is very difficult and depends on a good knowledge of 
the illumination conditions. Shape analysis also shows ambiguities. A convex-shaped 
surface illuminated from above shows the same surface shading as a concave-shaped 
surface illuminated from below. 

Structure from Texture 
Characteristic scales and orientation of the texture depend on the orientation of the 

surface. Thus we can infer the orientation of a surface from the orientation of the 

texture. Moreover, we can infer the depth of the surface from the characteristic scale 

of the texture. In this sense, texture is a richer feature than the shading of an object. 

Edges between surfaces can be recognized by discontinuities in the orientation of the 

texture. Gradual changes give clues on cylindrically and spherically shaped surfaces. 

Structure from Motion 
The analysis of motion also provides clues as to the depth of a scene. Intuitively, a 

more distant object will move slower on the image plane. If the camera moves towards 

a scene, objects which are closer to the camera move faster than more distant objects. 
Moreover, motion of the camera results in an observation of the scene from a different 
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point of view. Objects which are occluded by observation from one perspective might 
be visible from another perspective. Since we will discuss motion analysis in detail in 
chapters 14-17, we willleave the discussion here with these few qualitative remarks. 

Summary 
Many of the briefly outlined approaches are still at the beginning. All of them are still 
active areas of research. Interested readers can find a good survey in the "Readings 
on Computer Vision", edited by FischZer and Pirschein [1987], the special issue of the 
journal Artificial Intelligence 17, 1-3 [1981] on computer vision, and Shirai [1987]. 

In this chapter we focus on the reconstruction methods which are widely used in sci
entific applications. Basically, we discuss two different approaches. In our discussion on 
optical imaging, we concluded that the depth of focus depends to a large extent on the 
imaging conditions (section 2.2.5), as do three-dimensional imaging and reconstruction 
methods. In section 13.2 we discuss the reconstruction from focus series. Focus series 
are taken with microscopes where the depth of focus is very low. Then, in section 13.3, 
we discuss reconstruction from tomographic images (see section 2.2.10). Tomographie 
imaging is characterized by a large depth of focus. Absorption or emission of radia
tion from all depths of the observed objects is superimposed evenly in the observed 
projections. 

Reconstruction of the depth of surfaces from stereo images can be regarded as a 
special case of motion analysis. A stereo image can be thought as two consecutive 
images of an image sequence, where the camera moves from the position of the left to 
the position of the right stereo camera while observing a static scene. Consequently, we 
discuss stereo image analysis not in a separate section but together with the analysis 
of motion in chapter 17. 

13.2 Focus Series 

13.2.1 Reconstruction of Surfaces in Space 

Before we discuss the more complex problern of reconstructing a truly three-dimensional 
object from focus series, we study the simpler case of the reconstruction of a single 
surface. Sudaces occur in all cases where non-transparent surfaces are observed with 
microscopes. Steurer et al. [1986] developed a simple method to reconstruct a depth 
map from a light microscopic focus series. A depth map is a two-dimensional function 
which gives the depth of an object point d(x 1 , x 2 )- relative to a reference plane- as 
a function of the image coordinates (x1, x 2 ). In the literatme on artificial intelligence, 
such a depth map is also called a 2 1/2-D sketch of the scene. 

With the given restrictions, only one depth value for each image point needs to be 
found. We can make use of the fact that the three-dimensional point spread of optical 
imaging we discussed in detail in section 2.2.6 has a distinct maximum on the focal 
plane, because the intensity falls off with the square of the distance from the focal 
plane. This means that at all points where we get distinct image points, such as edges, 
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Figure 13.2: Superposition of the point spread function of two neighboring points on a surface. 

lines, or local extrema, we will also obtain an extremum in the gray value on the focal 
plane. Figure 13.2 illustrates that the point spread functions of neighboring image 
points do not influence each other close to the focal plane. 

Steurer's method makes use of the fact that a distinct maximum of the point spread 
function exists in the focal plane. His algorithm includes the following steps: 
1. A focus series of 16 images is taken with constant depth differences. In order to 

improve the signal-to-noise ratio, several images are digitized and averaged at each 
depth level. 

2. Then the magnitude of the difference between consecutive images is computed. The 
magnitude of the difference is maximal on the focal plane. 

3. Such a maximum only occurs in image regions with gray value changes. Therefore, a 
Sobel operator is used to filter out such image regions. The highpass filtered images 
are segmented to obtain a mask for the regions with gray value changes. 

4. In the masked regions, we then search the maximal magnitude of the difference in 
all the images of the focus series. The image in which the maximum occurs gives a 
depth value for the depth map. 

5. Since the depth map will not be dense, an interpolation of the depth map is neces
sary. Steurer used a region-growing method followed by an adaptive lowpass filtering 
which is applied only to the interpolated regions, in order not to corrupt the directly 
computed depth values. 

This method was successfully used to determine the surface structure of worked 
metal pieces by a noninvasive method. Figure 13.3 shows that good results have been 
achieved. A filing can be seen which sticks out of the surface. Moreover, the surface 
shows clear traces from the grinding process. 

13.2.2 Reconstruction by Inverse Filtering 

If true three-dimensional objects and not only surfaces are involved, we need to recon
struct the 3-D object function g(:c) from the 3-D focus series which is blurred by the 
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Figure 13.3: a) Focus series with 16 imagesofametallic surface taken with depth distances of 2pm; 
the focal plane becomes deeper from the right to the left and from top to bottom. b) Depth map 
computed from the focus series. Depth is coded by intensity. Objects closer to the observer are shown 
brighter. From Steurer et al. [1986]. 
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3-D point spread function of optical imaging. It is obvious that an exact knowledge of 
the PSF is essential for a good reconstruction. In section 2.2.6 we computed the 3-D 
PSF of optical imaging neglecting lens errors and resolution Iimitation due to diffrac
tion. However, high magnification microscopy images are diffraction-limited. Therefore 
the simple analysis in section 2.2.6 is not adequate. 

The diffraction-limited 3-D PSF was computed by Erhardt [1985]. The resolution 
limit basically changes the double-cone close to the focal plane. At the focal plane 
it does not reduce to a point but to a diffraction disk. As a result, the OTF drops 
off to higher wave numbers in the k", ky plane. We can regard the diffraction-limited 
resolution as an additionallowpass filter by which the OTF for unlimited resolution is 
multiplied. This filtering produces the effects on the PSF and OTF described above. 

If the OTF is known exactly, reconstruction by inverse fittering becomes- at least 
principally - a simple procedure. The distortion of the focus series by the point 
spread function H must be reversed by application of the inverse operator H-1 . We 
can perform this operation either in the Fourier or in the space domain: 

G 

G 

;:-1 ( fi-1 :FG') 

(:F-1fi-1) * G'. 
(13.1) 

G' and G denote the measured and original 3-D image, respectively, and :F is the 
Fourier transform operator. In the Fourier domain, we multiply the Fourier transformed 
focus series by the inverse OTF fi-1. From the result we compute the inverse Fourier 
transform and obtain the reconstructed focus series. We can also perform the inverse 
filter operation in the space domain. First we compute the inverse Fourier transform of 
the inverse of the OTF fi-1. Then we obtain a convolution kernel which inverses the 
effect of the PSF. 

So far the procedure looks simple and straightforward. The real problems are related 
to the fact that the OTF shows a wide range in which it vanishes (see figure 2.9 in 
section 2.2.7). 

This means that a whole range of periodic structures is completely lost in the image. 
Without additional knowledge we cannot reconstruct these components from the focus 
series. The reconstruction problern becomes even more complicated if the images are 
corrupted with noise. If a periodic component is attenuated below the noise level, we 
must multiply the Fourier transformed focus series at the corresponding wave number 
by a large factor. The periodic component will get back to its original value, but 
the noise level will increase also. In other words, the signal-to-noise ratio will be left 
unchanged. 

The simplest approach to yield an optimum reconstruction is to limit application 
of the inverse OTF to the wave number components which are not damped below a 
critical threshold. This threshold depends on the noise in the images. In this way, the 
true inverse OTF is replaced by an effective inverse OTF which approaches zero again 
in the wave number regions which cannot be reconstructed. 

The results of such a reconstruction procedure are shown in plate 14. A 64 x 64 x 64 
focus series has been taken from the nucleus of a cancerous rat liver cell. The resolution 
in all directions is 0.22 pm. The images clearly verify the theoretical considerations. The 
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reconstruction considerably improves the resolution in the xy image planes, while the 
resolution in z direction is clearly worse. 

Better resolution can only be achieved if additional knowledge is introduced into the 
reconstruction process. We illustrate the importance of such conditions with a simple 
example. Let us assume that our image contains only two gray values as, for example, 
a sheet of paper with letters. Assurning that only two gray values are present in the 
image and that the PSF of the blurring is even, we know that the edges between the 
letters and the background are located at the mean between the two gray values. Thus 
we may suggest a very simple reconstruction process which is just a simple point-based 
segmentation process with a threshold at that level. Reconstruction methods which 
impose constraints on the reconstructed images are known as constrained deconvolution 
or constraint inverse filtering. 

Unconstrained inverse filtering can also be performed in the space domain using 
an iterative method. Let 1i be the blurring operator. We introduce a new operator 
1i' = I- 1i. Then the inverse operator 

-1 I 
1i =I -1i' 

can be approximated by the Taylor expansion 

or explicitly written for the OTF in the Fourier domain 

' -1 ' ' 2 ' 3 ' k 
H = 1 + H' + H' + H' + ... + H' . 

(13.2) 

(13.3) 

(13.4) 

In order to understand how the iteration works, we consider periodic structures. First, 
we take one which is only slightly attenuated. This means that ii is only slightly 
less than one. Thus ii' is small and the expansion converges rapidly. The other 
extreme could be if the periodic structure has nearly vanished. Then H' is close to one. 
Consequently the amplitude of the periodic structure increases by the same amount 
with each iteration step (linear convergence). This procedure shows the advantage that 
we can stop the iteration when the noise becomes visible. 

Unfortunately it is an exception that constraints lead to such a Straightforward 
reconstruction algorithm as for our simplistic example. Generally, the introduction of 
constraints poses difficult mathematical problems which are beyond the scope of this 
book. 

13.2.3 Confocal Laser Scanning Microscopy 

From the previous section we can conclude that it is not possible to reconstruct three
dimensional images entirely from a focus series obtained with conventional light mi
croscopy. A wide range of wave numbers is lost completely, because of the zeros in the 
OTF. Generally, the lost structures cannot be recovered. Therefore the question arises, 
whether it is possible to change the image formation and thus the point spread function 
so that the optical transfer function no Ionger vanishes, especially in the z direction. 
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Figure 13.4: Principle of confocallaser scanning microscopy. 

One answer to this question is confocallaser scanning microscopy. Its basic principle 
is to illuminate only the points in the focal plane. This is achieved by a laser beam 
which scans over the imageplane and is focused by the optics of the microscope onto the 
focal plane (:figure 13.4). Since the same optics are used for imaging and illumination, 
the intensity distribution in the object is given approximately by the point spread 
function of the microscope. ( Slight differences occur since the light is coherent.) Only 
a thin slice close to the focal plane receives a strong illumination. Outside this slice, 
the illumination falls off with the distance squared from the focal plane. In this way 
contributions from defocused objects outside the focal plane are strongly suppressed and 
the distortions decrease. But can we achieve a complete distortion-free reconstruction? 
We will use two independent trains of thought to answer this question. 

Let us :first imagine a periodic structure in the z direction. In conventional mi
croscopy, this structure is lost since all depths are illuminated equally. In confocal 
microscopy, however, we can still observe a periodic variation in the z direction because 
of the strong decrease of the illumination intensity provided that the wavelength in the 
z direction is not too small. 

The same fact can be illustrated using the PSF. The PSF of confocal microscopy is 
given as the product of spatial intensity distribution and the PSF of the optical imaging. 
Since both functions fall off with z-2 , the PSF of the confocal microscope falls off with 
z-4 • This much sharper localization of the PSF in the z direction results in a non-zero 
OTF in the z direction up to the z resolution limit. 

The superior 3-D imaging of confocallaser scanning microscopy can be seen in the 
original images of the focus series (plate 15). Although these images are noisier, they 
contain more details than seen in plate 14. Furthermore, the resolution in the z direction 
is much better. 

The laser scanning microscope has found widespread application in medical and 
biological sciences. 
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13.3 Reconstruction of Tomographie Images 

13.3.1 Introduction 

Now we turn to the reconstruction of 3-D objects from which projections have been 
taken with tomographic methods (section 2.2.10). With these techniques, we first slice 
the object. Then we observe the one-dimensional projections of these slices from all 
directions, i. e., in an angular range from 0 to 1r. Therefore, our task is the reconstruction 
of these slices. The final three-dimensional object is then given by a stack of these slices. 

Tomographie methods have gained significant importance in medical diagnostics. 
Three-dimensional data from within the human body areessential for the exact location 
of tumors, the planning of complex surgery, and other diagnostic or therapeutic tasks. 
A wide variety of methods is used to image different properties of the tissue. Basically, 
we can distinguish three imaging methods: absorption-, emission- and time-of-flight 
tomography. 

The best known example is probably X-ray tomography. The part of the patient's 
body to be examined is X-rayed from different directions. The intensity variations in 
the projections are related to a) the path length through the body and b) the absorption 
coefficient which depends on the nature of the tissue, basically the atomic weight of the 
elements. Emission tomography can be applied by injection of radioactive substances 
into the organ to be investigated. A complex form of stimulated emission tomography 
is nuclear magnetic resonance tomography (NMR). 

Ultrasonic imaging is another important area. As with X-rays, we can measure 
the absorption for imaging. Furthermore, the speed of sound depends on the elasticity 
properties of the medium. The speed of sound can be investigated by measuring the 
time-of-flight. All this might look very promising, but ultrasonic imaging is made very 
difficult by the reflection and refraction of rays at interfaces between the layers of 
different speeds of sound. 

Besides medical applications, tomographic methods are used in many other scientific 
areas. This is not surprising, since many complex phenomena can only be understood 
adequately if three-dimensional data can be obtained such as acoustic tomography in 
oceanography [Knox, 1989], the study of technical combustion, and three-dimensional 
imaging of turbulent flows with holographic methods. 

Before we can discuss the reconstruction algorithms themselves, we must carefully 
study the prerequisites necessary to find a solution. If we want to treat the problern 
with a linear method, it is essential that the objects are linearly superimposed in the 
projections. This condition is met when the imaged property ,.; can be integrated along 
a projection beam. 

I= j ds ,.;(s). (13.5) 
path 

In emission tomography, the emitted radiation may not be absorbed from other parts 
of the object. In absorption tomography, the imaged property is the absorption coef
ficient p,. The differential intensity loss dl along a path element ds is proportional to 
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Figure 13.5: Geometry of a projection beam. 

the absorption coefficient p,(:r:), to ds, and to the intensity J(:r:): 

dJ = -p,(:r: )J(:r:) ds. 

Integration yields 

In~ =- j ds p,(:r:). 
path 

(13.6) 

(13.7) 

The logarithm of the intensity is the proper quantity to be measured, since it results 
from a linear superimposition of the absorption coefficient. Generally, the intensity 
is not suitable, except when the total absorption is low. Then we can approximate 
ln(I/!0 ) by I/Io -1. 

Tomographie reconstruction does not work at all if opaque objects are contained in 
the examined scene. In this case, we get only the shape of the opaque object in the 
projection, but not any information on the transparent objects which lie before, in, or 
behind this object. 

13.3.2 Radon Transform and Fourier Slice Theorem 

In section 2.2.10 we described the parallel projection but only qualitatively. First it is 
important to note that the projections under all the angles {) can be regarded as an
other two-dimensional representation of the image. One coordinate is the position in the 
projection profile, r, the other the angle{). Consequently, we can regard the parallel pro
jection as a transformation, which transforms the image into another two-dimensional 
representation. Reconstruction then just means applying the inverse transformation 
provided that it exists. 

A projection beam is characterized by the angle of the normal to the projection 
beam, {), and the offset r (figure 13.5). Furthermore, we assume that we slice the 
three-dimensional object parallel to the x 1x 2 plane. Then the scalar product between 
a vector :r: on the projection beam, and a unit vector nT = [ cos {), sin {) ] normal to 
the projection beam is constant and equal to the offset r of the beam 

:r:T n- r = x 1 cos{) + x2 sin {)- r = 0. (13.8) 



13.3 Reconstruction of Tomographie Images 241 

The projected intensity P(r, '19) is given by integration along the projection beam: 

00 

P(r,'!9)= jdsg(~)= jdsg(~)S(x1 cos'!9+x2 sin'!9-r). (13.9) 
path -oo 

The projective transformation of a two-dimensional function g( ~) onto P( r, 19) is named 
after the mathematician Radon as the Radon transform. To understand the properties 
of the Radon transform better, we analyze it in the Fourier space. This is easily done if 
we rotate the coordinate system so that the direction of a projection beam coincides with 
the x 1 axis. Then the r coordinate in P(r, '19) also coincides with the x2 coordinate and 
we can write the Fourier transform of the projection function in the rotated coordinate 
systems ( x~, x~) and ( k~, k;), respectively: 

00 

P(k~,0) = j dx~P(x~,O)exp(-ik~x~). (13.10) 
-oo 

The angle '19 is zero in the rotated coordinate system. Replacing P(x~, 0) by the defini
tion of the Radon transform (13.9) we yield 

P(k~,0) = _ldx~ [_ldx~ g(x~,x~)l exp(-ik~x~) = g(O,k~), (13.11) 

or, with regard to the original coordinate system, 

' ' T P(r, '19) = P [lkl, arctan (k2/k1)] = g(k n). (13.12) 

The spectrum of the projection is identical to the spectrum of the original object on a 
beam normal to the direction of the projection beam. This important result is called 
the Fourier slice theorem or projection theorem. 

We can derive the Fourier slice theorem without any computation if we regard the 
projection as a linear shift-invariant filter operation. Since the projection adds up all 
the gray values along the projection beam, the point spread function of the projection 
operator is a S line in the direction of the projection beam. In the Fourier domain 
this convolution operation corresponds to a multiplication with the transfer function, 
a S line normal to the S line in the space domain (see appendix A.2). In this way, 
the projection operator cuts out a slice of the spectrum in the normal direction to the 
projection direction. 

13.3.3 Filtered Back Projection 

Principle 
The considerations of the previous section form the base for a reconstruction procedure 
which is called filtered back projection. If the projections include projections from all 
directions, the obtained slices of the spectrum eventually cover the complete spectrum 
of the object. Inverse Fourier transform then yields the original object. Filtered back 
projection uses this approach with a slight modification. If we just added the spectra 
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of the individual projection beams to obtain the complete spectrum of the object, the 
spectral density for small wave numbers would be too high since the beams are closer to 
each other for small radii. Thus we must correct the spectrum with a suitable weighting 
factor. In the continuous case, the geometry is very easy. The density of the projection 
beams aligns with JkJ-1 . Consequently, the spectra of the projection beams must be 
multiplied by JkJ. Thus filtered back projection is a two-step process: 
1. Filtering of the projections: In this step, we multiply the spectrum of each projection 

direction by a suitable weighting function w(Jkl). Of course, this operation can also 
be performed as a convolution with the inverse Fourier transform of w(Jkl), w(r). 
Because of this step, the procedure is called the filtered back projection. 

2. Addition of the back projections: Each projection gives a slice of the spectrum. 
Adding up all the filtered spectra yields the complete spectrum. Since the Fourier 
transform is a linear operation, we can add up the filtered projections in the space 
domain. In the space domain, each filtered projection contains part of the object 
which is constant in the direction of the projection beam. Thus we can backpro
ject the corresponding gray value of the filtered projection along the direction of the 
projection beam and add it up to the contributions from the other projection beams. 

Continuous Gase 
After this illustrative description of the principle of the filtered back projection algo
rithm we derive the method quantitatively. First we restriet to the continuous case. 
Westart with the spectrum of the object and write the inverse transformation in polar 
coordinates (r, '!?) in order to make use of the Fourierslicetheorem 

21T 00 

g(:c) = jd'l? jdr rg(r,'l?)exp[ir(x1 cos'l?+x2 sin'l?)]. (13.13) 
0 0 

In this formula, the spectrum is already multiplied by the magnitude of the wave num
ber, r, but the integration boundaries are not yet correct to be applied to the Fourier 
slice theorem (13.12). r should run from -oo to oo and '19 only from 0 to 1r. In (13.13) 
we integrate only over half beams. We can compose a full beam from two half beams 
at the angles '19 and '19 + 1r. Thus we split the integral in (13.13) into two over the angle 
ranges 0 - 1r and 1r - 27r and obtain 

" 00 

g(:c) = jM jdrrg(r,'l?)exp[ir(x1 cos'l?+x2 sin'l?)] 
0 0 

" 00 

+ jd'l?' jdr rg(-r,'l?')exp[-ir(x1 cos19' +x2 sin19')]. 
0 0 

(13.14) 

Weused the following identities: '!?' = '19 + 1r, g(-r,'!?) = g(r,'!?'), cos('!?') = -cos('!?), 
sin('l?') = - sin('!?). Now we can recompose the two integrals again, if we substitute r 
by -r in the second integral and replace g(r, '19) by P(r, '19) because of the Fourier slice 
theorem (13.12): 

" 00 

g(:c) = jd'l? jdr lriP(r,'l?)exp[ir(xlcos'l?+x2 sin'l?)]. (13.15) 
0 -oo 
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With the abbreviation 
t = x1 cos iJ + x2 sin iJ 

we can reduce the two steps of the filtered back projection algorithm to the following 
formulas: 
1. Filtering; inner integral in (13.15): 

P' = .r-1(lki.1"P). {13.16) 

F denotes the Fourier transform operator. P' is the projection function P multiplied 
in the Fourierspace by lkl. If we perform this operation as a convolution in the space 
domain, we can formally write 

(13.17) 

2. Back projection; outer integral in {13.15): 

". 

g(z) = j P'(r, iJ) diJ. (13.18) 
0 

This equation shows how the object is built up by the back projections from all 
directions. 

Discr-ete Gase 
There are several details which we have not yet discussed, but which cause serious 
problems for the reconstruction in the infinite continuous case, especially: 
• The inverse Fourier transform of the weighting function lkl does not exist, because 

this function is not square-integrable. 
• It is impossible to reconstruct the mean "gray value" of an object because of the 

multiplication by lrl = lkl in the Fourier domain (13.15). 
Actually, we never apply the infinite continuous case, but only compute using dis

crete data. Basically, there are three effects which distinguish the idealized reconstruc
tion from the real-world: 
• The object is of limited size. In practice, the size limit is given by the distance 

between the radiation source and the detector. 
• The resolution of the projection profile is limited by the combined effects of the extent 

of the radiation source and the resolution of the detector array in the projection plane. 
• Finally, we can only take a limited number of projections. This corresponds to a 

sampling of the angle iJ in the Radon representation of the image. 
In the following we will discuss some of these practical reconstruction problems using 

illustrative examples. 

Projection and Reconstruction of a Point 
We can learn a lot about the projection and reconstruction by considering the recon
struction of a simple object, a point. Then the projections from all directions are equal 
(figure 13.6a) and show a sharp maximum in the projection functions P(r, iJi)· In the 
first step of the filtered back projection algorithm, P is convolved with the lkl filter. 
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b) 

Figure 13.6: Illustration of the fittered back projection atgorithm with a point object: a) projections 
from different directions; b) fittering of the projection functions; c) back projection: adding up the 
filtered projections. 

The result is a modified projection function P' which is identical to the point spread 
function of the lkl filter (figure 13.6b). 

In a second step, the back projections are added up in the image. From figure 13.6c 
we can see that at the position of the point in the image the peaks from all projections 
add up. At all other positions in the images, the filtered back projections superimpose 
each other in a destructive manner, since they show negative and positive values. If 
the projection directions are su:fficiently close to each other, they cancel each other 
except for the point in the center of the image. Figure 13.6c also demonstrates that an 
insu:fficient number of projections leads to star-shaped distortion patterns. 

The simple example of the reconstruction of a point from its pro jections is also useful 
to show the importance of filtering the projections. Let us imagine what happens when 
we omit this step. Then we would add up 8 lines as back projections which rotate 
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Figure 13.7: The head phantom (Shepp and Logan, 1974) is a widely used test object for tomographic 
reconstruction algorithms. It consists of 10 ellipses, which partly show only faint gray value differences. 
From Kak (1984). 

around the position of the point. Consequently, we would not obtain a point but a 
rotational symmetric function which falls off with lz l-1. As a result, the reconstructed 
objects would be considerably blurred. The point spread function of the blurring is the 
lzl-1 function. 

Practical Application of the Filtered Back Projection 
The head phantom shown in figure 13.7 is a widely used artificial test object for to
mographic reconstruction algorithms. In order to test the resolution limits of the re
construction, it partly contains only faint gray value differences. Figure 13.12 shows 
that the filtered back projection algorithm yields an accurate reconstruction even of fine 
details and small gray value differences. A detailed discussion of the filtered back pro
jection including the practically important reconstruction from fan-beam projections 
can be found in Kak [1984] and Jain [1989]. 

13.3.4 Algebraic Reconstruction 

General Approach 
In this section we discuss a totally different approach to the reconstruction from projec
tions. It is based on discrete inverse theory and thus constitutes a very general method 
which is used in many other applications, not only in image processing. The image 
is regarded as a one-dimensional image vector. This mapping is easily performed by 
renumbering the pixels of the image matrix row by row (figure 13.9). In this way, a 
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Figure 13.9: Illustration of algebraic reconstruction from projections: A projection beam dk crosses 
the image matrix. All pixels which are met by the beam contribute .to the projection. 
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p x q image matrix is transformed into a column vector with the dimension pq: 

rn= (13.19) 

Now we take a single projection beam which crosses the image matrix (figure 13.9). 
Then we can attribute a weighting factor to each pixel of the image vector, which 
represents the contribution of the pixel to the projection beam. We can combine these 
factors in another M = pq dimensional vector gk: 

9k,l 

9k,2 

9k,l 

9k,M 

(13.20) 

The total emission or absorption along the kth projection beam dk can then be expressed 
as the scalar product of the two vectors gk and rn: 

M 

dk = L9k,lml = gf rn. (13.21) 
1=1 

If N projection beams cross the image matrix, we obtain a linear equation system of N 
equations and M unknowns: 

(13.22) d = G rn . 
.__,.." .__,.." .__,.." 

N NxM M 

Thus algebraic reconstruction involves solving huge linear equation systems. At this 
point, it is helpful to illustrate the enormaus size of these equation systems. If we only 
want to reconstruct an image with a coarse resolution, say 64 x 64 which is crossed by 
6000 projection beams, we must solve an equation system with 6000 equations and 4096 
unknowns. 

Nevertheless, it might be worthwhile carrying this out as the algebraic reconstruction 
uses a very general and flexible method. It is not limited to parallel projection. The 
beams can cross the image matrix in any manner and can even be curved. In addition, 
we obtain a discrete solution. With appropriate weighting factors, we can directly take 
into account the limited detector resolution and the size of the radiation source. 

Since a solution of (13.22) basically involves matrix inversion we speak of a linear 
discrete inverse problem. Problems of this kind are very common in the analysis of 
experimental data in natural sciences. An experimentalist looks at a discrete inverse 
problern in the following way: he performs an experiment from which he gains a set 
of measuring results which are combined in an N dimensional data vector d. These 
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data should be compared with a model of the observed process. The parameters of 
this model are given by an M dimensional model vector m. Now we assume that the 
relationship between the model and the data vector can be described as linear. It can 
then be expressed by a model matrix G and we obtain {13.22). 

In case of the reconstruction problem, the data vector contains the measured projec
tions and the model vector contains the gray values at the pixels of the image matrix. 
The relationship between these two vectors is given by the model matrix which de
scribes how the projection beams cross the image matrix. It might be instructive to 
illustrate this with another very familiar problem, the fit of a straight line to a set of 
experimental data x, y. In this case, our model vector contains only two parameters, 
the offset and the slope of the straight line y = a0 + a1x. The data vector contains 
all data points y,., while the model matrix contains the relationship between the data 
points and model parameters which depends on the x values of the data points. We 
end up with the linear equation system 

[: ~:][:~]=[~:]. 
1 XM YM 

{13.23) 

lf we have only two data points which do not coincide x 1 i- x2 , we get an exact solution 
of the linear equation system. lf more than two data points are available, we have more 
equations than unknowns. We say that the equation system is overdetermined. In this 
case, it is generally no Ionger possible to obtain an exact solution. We can only compute 
an estimate of the model parameters in the sense that the deviation of the data d from 
the data predicted with the model c4re = Gmest is minimal. This deviation can be 
combined into an error vector e: 

e = d- c4re = d- Gmest· {13.24) 

In order to minimize the error vector we need a suitable measure. We may use norms 
which we have already discussed when using inner product vector spaces in section 3.3.1. 
Generally, the Ln norm of the M dimensional vector e is defined as 

{13.25) 

A special case is the Loo norm 

{13.26) 

The L2-Norm is more commonly used; it constitutes the sum of the squared deviations 
of the error vector elements 

{13.27) 

Higher norms rate higher deviations with a more significant weighting. The statistics of 
the deviations determines which is the correct norm to be taken. It can be proved that 
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Figure 13.10: Illustration of the Rough transform with the example of a straight-line fit: the Rough 
transform maps the (x,y) data space onto the (ao,at) model space: a) data space; b) model space. 

the L2 norm corresponds to the normal distribution [Menke, 1984]. In appendix A.1 
it is shown that the overdetermined linear inverse problern is solved in the sense of a 
minimum L 2 norm of the error vector by 

( T )-! T 
mest = G G G d. (13.28) 

Another important point should be mentioned. As all the methods are based on 
statistics, the solution of the problern also includes an estimate of the errors. The mean 
deviation between the measured and predicted data points is directly related to the 
norm of the error vector. The variance is 

(13.29) 

In order not to introduce a bias, we only divide by the degree of freedom and not by 
N. (If M = N we obtain an exact solution from which no error estimate is possible.) 
Besides the variance of the data points, the solution also contains the variances of all 
the model parameters. If the data are uncorrelated, the matrix ( GT G)-1 is identical 
to the covariance matrix except for the factor a2 • The diagonal of this matrix contains 
the variances of the model parameters [Menke, 1984] (see section 12.3). 

Geometrical Illustration of Linear Equation Systems; Hough Transform 

Before we study methods to solve such huge linear equation systems, it is helpful to 
illustrate linear equation systems geometrically. 

M model parameters span an M dimensional vector space. Each linear equation 
of an inverse problern can be regarded as a point in the data space which contains 
the data itself and the corresponding parameters which are described in the model 
matrix G. In case of a fit with a straight line a data point contains the x and y value 
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(figure 13.10a). Each linear equation also contains the unknown model parameters and 
thus a hyperplane in the model space is constituted, i. e., a subspace with the dimension 
M- 1 (figure 13.10). This mapping of the data points onto the model space is called 
the Hough transform. M such hyperplanes which are neither parallel nor identical to 
each other intersect in one point in the model space. This point gives the exact solution 
of M equations with M unknowns. 

In an overdetermined case, more than M hyperplanes are given. Generally they 
will not intersect each other all in one point, but show a more or less distributed 
cloud of intersection points of M hyperplanes each (figure 13.10b ). We may think of 
some suitable mean of the set of (M- N)(M- N -1)/2 intersection points as being 
the optimum solution. The scatter of the intersection points in the directions of the 
different model parameters is a measure for the standard deviation of the estimates of 
the corresponding model parameters. 

Iterative Methods to Solve Sparse Equation Systems 
Now we return to the solution of the algebraic reconstruction problem. Since each pro
jection beam only meets a small fraction of the pixels of the image matrix (figure 13.9), 
the matrix G contains only a few non-zero weighting factors. Such an equation system 
is called sparse. Most of the projection beams do not even cross each other in the 
image matrix at all. This means that the corresponding linear equations contain dis
junct subsets of model parameters. Geometrically, this means that the corresponding 
hyperplanes are orthogonal to each other. 

The fact that most hyperplanes are orthogonal to each other in sparse equation sys
tems is the base of the following simple iterative solution method of the linear equation 
system: 

Gm=d. 

Without restricting generality, we can modify the equation system so that all row vectors 
Yk of the matrixGare unit vectors. These vectors are then normal to the hyperplane of 
the equation they represent. Proof: Any vector which points from the origin to a point 
of the hyperplane meets the condition mT Yk = d. Any difference vector between two 
such vectors m 1 - m 2 lies on the plane and satisfies (m1 - m 2)T Yk = 0. Consequently 
g k is normal to the hyperplane. 

Westart the iterative solution with an arbitrary point m<o) and project it onto the 
first hyperplane. Then we get a new solution which meets the first equation of the 
linear equation system (figure 13.11): 

(13.30) 

We continue this procedure by projecting the solution of the jth iteration onto the 
j + lth hyperplane: 

(13.31) 

After we have projected the solution onto all the N hyperplanes, we continue the 
procedure in a cyclic manner until mCi) has converged sufficiently accurately to give 
the optimum solution. Figure 13.11 illustrates that the orthogonality of the hyperplanes 
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Figure 13.11: Illustration of the iterative solution of a linear equation system by alternating projection 
onto hyperplanes: a) fast convergence with nearly orthogonal planes; b) slow convergence with nearly 
parallel hyperplanes. 

is the critical parameter for a fast convergence of the iteration. If two hyperplanes meet 
under an acute angle, iteration is very slow (figure 13.11b). 

Intuitively, it is obvious that if all hyperplanes are normal to each other, then 
an equation system with M equations and M unknowns will converge in exactly M 
iteration steps. 

In this brief overview, we could only scratch the surface of numerical methods to 
solve large linear equation systems. For a more thorough analysis including detailed 
algorithms the reader is referred to the excellent survey on matrix computations by 
Golub and van Loan [1989]. 

Reconstruction from Parallel Projection 
Figure 13.12 shows the algebraic reconstruction resulting from an advanced method 
which is called the simultaneaus algebmic reconstruction technique [Andersen and Kak, 
1984]. The reconstruction is considerably worse than those using the filtered back 
projection algorithm. 

What is the reason for this difference? The basic difference between both methods 
lies in the fact that the filtered back projection technique is closely related to the 
mathematics of the projection. We may conclude that the reconstruction result should 
be much more constrained and much less sensitive to noise than the results from the 
very general concept of algebraic reconstruction. 
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Figure 13.12: a) Reconstruction of the head phantom by algebraic reconstruction from parallel projec
tions under identical conditions as in figure 13.8; b) horizontal cross section through the lower image 
part where the three small ellipses are located. See figure 13.7 for a more precise comparison of original 
and reconstructed values; from Kak [1984]. 



14 Motion 

14.1 Introduction 

In this chapter we extend our considerations from single images to image sequences. We 
may compare this step with the transition from still photography to motion pictures. 
Only in image sequences can we recognize and analyze dynamic processes. Thus the 
analysis of image sequences opens up far-reaching possibilities in science and engineer

ing. A few examples serve as illustration: 
• Flow visualization is an old tool in fluid dynamics but has been used for a long time 

mainly for qualitative description, because manual quantitative evaluation has been 
prohibitively laborious. Digital image sequence analysis allows area-extended velocity 
data to be extracted automatically. In section 2.2.8 we discussed an example of flow 

visualization by particle tracking. Some results are shown in plate 4. 
• Satellite image sequences of the sea surface temperature (see section 1.2.1 and plate 1) 

can be used to determine near-surface ocean currents (Wahl and Simpson, 1990]. 
• In the industrial environment, motion sensors based on image sequence analysis are 

beginning to play an important role. Their usage covers a wide spectrum starting 
with remote velocity measurements in industrial processes [Massen et al., 1987] to 
the control of autonomous vehicles and robots [Dickmanns, 1987]. 
Image sequence analysis is a quite new and complex area of digital image processing. 

We will approach the problern of motion analysis in four steps which basically follow 
the historical development: 
1. In this chapter we will first become familiar with the problems of image sequence 

analysis in an intuitive way. Then we will work out the basic knowledge about 
motion. 

2. Historically, image sequence analysis began with the analysis of only two consecutive 
images. In chapter 15 we discuss different methods to determine the displacement of 
objects from two images of a sequence with local operations. 

3. In chapter 16 we will discuss how we can extend sparse displacement information of 
local operations in an integral concept to complete displacement information on the 

whole image plane. 
4. In the last chapter of this book we extend the analysis of motion from two to many 

images of the sequence. We will regard the image sequence as a three-dimensional 

object with two space and one time coordinates. In this way, a deeper understanding 
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of motion in image sequences can be worked out. As a result, new algorithms for 
motion determination are ernerging which are superior to the methods using only two 
images. 

14.1.1 Gray Value Changes 

Intuitively we associate motion with changes. Thus we start our discussion on motion 
analysis by observing the differences between two images of a sequence. Figure 14.1a 
and c show an imagepair from a construction area at Heidelberg University. There are 
differences between the upper and lower image which are, however, not evident from 
direct comparison. However, if we subtract one image from the other, the differences 
immediately become visible. In the lower left of the image a truck has moved, while 
the van and the car just behind it are obviously parked. In the center of the image 
we discover the outline of a pedestrian which is barely visible in the original images. 
The bright spots in a row in the top of the image turn out to be bikers moving along 
a cycle lane. From the displacement of the double contours we can estimate that they 
move faster than the pedestrian. Even from this qualitative description, it is obvious 
that motion analysis helps us considerably in understanding such a scene. It would be 
much harder to detect the cycle lane without observing the moving bikers. 

Figure 14.1 b and d show the same scene. Now we might even recognize the change 
in the original images. If we observe the image edges, we notice that the images have 
shifted slightly in a horizontal direction. What has happened? Obviously, the camera 
has been panned. In the difference image figure 14.1f all the edges of the objects appear 
as bright lines. However, the image is dark where the spatial gray value changes are 
small. Consequently, we can detect motion only in the parts of an image that show 
gray value changes. This simple observation points out the central role of spatial gray 
value changes for motion determination. 

So far we can sum up our experience with the statement that motion might result in 
temporal gray value changes. Unfortunately, the reverse conclusion that all temporal 
gray value changes are due to motion is not correct. At first glance, the pair of images 
in figure 14.2b and d look identical. Yet, the difference image figure 14.2f reveals that 
the upper image is brighter than the lower. Obviously the illumination has changed. 
Actually, a lamp outside the image sector shown has been switched off before the image 
in figure 14.2d was taken. Can we infer where this lamp is located? In the difference 
image we notice that not all surfaces are equally bright. Surfaces which are oriented 
towards the camera show about the same brightness in both images, while surfaces 
oriented towards the left are considerably less bright. Therefore we can conclude that 
the lamp is located to the left outside the image sector. 

Another pair of images (figure 14.2a, c) shows a much more complex scene, although 
we did not change the illumination. We just closed the door of the lab. Of course, we 
see strong gray value differences where the door is located. The gray value changes, 
however, extend to the floor close to the door and to the objects located to the left of 
the door. As we close the door, we also change the illumination in the proximity of the 
door since no more light is reflected into this area. 

In conclusion, we are faced with the complex problern that motion is inherently 
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Figure 14.1: a) to d) Two pairs of images from the construction area for the new head clinic at 
Heidelberg University. What has changed from the upper to the lower image? e) Difference between 
a) and c); f} difference between b} and d). In both images the magnitude of the difference is shown. 
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Figure 14.2: a) to d) Two pairs ofimages from an indoor Iab scene. What changes can be seen between 
the upper and lower image? e) Difference between a) and c); f) difference between b) and d). In both 
difference images the difference shown is g(2) - g(ll + 128. 
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a) b) 

Figure 14.3: Illustration of the aperture problern in motion analysis: a) ambiguity of displacement 
vectors at an edge; b) unambiguity of the displacement vector at a corner. 

coupled with illumination changes in the environment of the moving object (see also 
section 14.4.2). How can we distinguish gray value changes directly caused by motion 
from those which only result from indirect illumination changes? 

14.1.2 The Aperture Problem 

So far we learnt that to estimate motion is closely related to spatial and temporal 
gray value changes. Both quantities can easily be derived with local operators which 
compute the spatial and temporal derivatives. Such an operator only "sees" a small 
sector - equal to the size of its mask - of the observed object. We may illustrate this 
effect by putting a mask or aperture onto the image. 

Figure 14.3a shows an edge which moved from the position of the solid line in the 
first image to the position of the dotted line in the second image. The motion from 
image one to two can be described by a displacement vector, or briefiy, DV. In this 
case, we cannot determine the displacement unambiguously. The displacement vector 
might go from one point of the edge in the first image to any other point of the edge 
in the second image (figure 14.3a). We can only determine the component of the DV 
normal to the edge, while the component parallel to the edge remains unknown. This 
ambiguity is known as the aperture problem. 

An unambiguous determination of the DV is only possible if a corner of an object is 
within the mask of our operator (figure 14.3b). This emphasizes that we can only gain 
sparse information on motion from local operators. 

14.1.3 The Correspondence Problem 

The aperture problern is caused by the fact that we cannot find the corresponding 
point at an edge in the following image of a sequence, because we have no means of 
distinguishing the different points at an edge. In this sense, we can comprehend the 
aperture problern only as a special case of a more general problem, the correspondence 
problem. Generally speaking, it means that we are unable to find unambiguous cor
responding points in two consecutive images of a sequence. In this section we discuss 
further examples of the correspondence problem. 

Figure 14.4a shows a two-dimensional deformable object - as a blob of paint -
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Figure 14.4: Illustration of the correspondence problern with the deterrnination of displacernent vectors: 
a) deforrnable two-dirnensional object; b) regular grid. 
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Figure 14.5: Correspondence problern with indistinguishable particles: a) rnean particle distance is 
!arger than the rnean displacernent vector; b) the reverse case. Filled and hollow circles: particles in 
the first and second irnage. 

which spreads gradually. It is immediately obvious that we cannot obtain any un
ambiguous determination of displacement vectors, even at the edge of the blob. We 
cannot make any estimate of the displacements in the inner part of the blob, because 
there are no features visible which we could track. At first glance, we assume that 
the correspondence problern will not occur with rigid objects which show a lot of gray 
value variations. The grid as an example of a periodic texture, shown in figure 14.5, 
demonstrates that this is not the case. As long as we observe the displacement of the 
grid with a local operator, the displacement is ambiguous concerning the multiples of 
the grid constant. Only when we observe the whole grid, does the displacement become 
unambiguous. 

Another variation of the correspondence problern occurs if the image includes many 
objects of the same shape. One typical case is when small particles are put into a 
flow field in order to measure the velocity field. In such a case the particles are in
distinguishable and we generally cannot tell which particles correspond to each other 
(figure 14.5b ). We can find a solution to this problern if we take the consecutive images 
at such short time intervals that the mean displacement vector is significantly smaller 
than the mean particle distance. With this additional knowledge, we can search for the 
nearest neighbor of a particle in the next image. Such an approach, however, will never 
be free of errors, because the particle distance is statistically distributed. 

These simple examples clearly demonstrate the basic problems of motion analysis. 
The correspondence problern indicates that the image sequence does not reproduce the 
reality of the three-dimensional world unambiguously in the two-dimensional image 
plane. In relation to the problern of corresponding objects we learnt that the phys-
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ical correspondence, i. e., the real correspondence, may not be identical to the visual 
correspondence in the image. We outline two cases: 

1. We can find a visual correspondence without the existence of a physical correspon
dence, as in case of objects or periodic object textures which are indistinguishable. 

2. Despite the existing physical correspondence we might find no visual correspondence. 
This is the case if the objects show no distinctive marks or if we cannot recognize the 
visual correspondence because of illumination changes (section 14.1.1 ). 

14.1.4 Motion Analysis and 3-D Reconstruction 

The discussion of gray value changes in section 14.1.1 has already shown that we can 
learn a lot about a scene by means of motion analysis. In this chapter the relation
ship between the reconstruction of a three-dimensional scene and motion analysis is 
investigated further. 

First, we notice the close relation between image sequence analysis from a pair of 
images and stereo analysis with two cameras. Let us consider a scene with stationary 
objects. If we observe the scene with a stereo camera setup, we will get two images 
which show the scene from two different points of view. We can tell the distance of the 
objects from the displacement of corresponding points as discussed in section 2.2.9. We 
will get exactly the same two images if we take only one camera but move it from the 
position of the left to the position of the right stereo camera [Nagel, 1981]. 

From this close correspondence between stereo and motion analysis we can see that 
the analysis of stereo images and an image pair from a sequence are identical until we 
reach the stage where we start interpreting the determined displacements (figure 14.6). 

14.2 Motion Kinematics 

A well equipped analysis of motion in images requires basic knowledge of motion in the 
three dimensional world and its projection onto the image plane. Physicists distinguish 
two types of motion description. Kinematics refers to the description of the motion path 
of the objects. It analyzes which basic or elementary types of motion are possible for a 
given object. Motion dynamics describes how the forces acting on an object change its 
motion. In this section we will discuss the kinematics of motion in three-dimensional 
space and its perspective projection onto the image plane. 

As in section 2.2, we denote quantities in the three-dimensional world by capital 
letters and quantities in the image plane by lower-case letters. The world Coordinates 
X and their temporal derivatives, the velocity U, are perspectively projected onto the 
image plane by (2. 7) 

(X1,X2,X3) f-t (x1,x2) 

(Ul> U2, U3) f-t (ub u2). 

In discrete imagery, we do not measure the velocity u but only the displacement s 
between consecutive images. If b.t is the time interval between two consecutive images, 
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Figure 14.6: Comparative reflection of the analysis of pairs of images from a stereo setup and an image 
sequence. 
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an approximation of the velocity is given by dividing the displacement by the time 
interval: 

(14.1) 

Since the velocity and the displacement only differ by a constant factor, we can use 
both quantities to describe motion in discrete imagery. 

14.2.1 Mass points 

A mass point is the simplest abstraction we can make of an object. The extent of 
the object is neglected, all mass being concentrated in one point. Translation is the 
only form of motion for a mass point. ModeHing objects as mass points is helpful to 
discuss some elementary properties of projected motion. From the equation for per
spective projection (2.7), the velocity on the imageplane can be computed by temporal 
differentiation xl 

Xl=- ~ x3 
x2 (14.2) 

x2=- ~ x3 
The motion in the three-dimensional world cannot be inferred unambiguously from the 
projected velocities. Even if u = O, U is not necessarily zero. Equation (14.2) only 
results in the constraints 

(14.3) 

Geometrically, these constraints mean a motion of the mass point along a projection 
beam. Thus the velocity vector U, inferred from the projected velocity vector u, 
contains an unknown additive vector along the projection beam: 

Theinverse projection problern is underdetermined. This does not mean, however, 
that we cannot extract useful information on the observed motion from its projections 
onto the image plane. 

As an example, let us consider the very simplest motion problern where the camera 
is moving with constant velocity U relative to a scene at rest. 

Focus of Expansion (FOE) 
Combining (14.2) and (14.3), we conclude that the velocity field vanishes at the point 
:I: in the image plane: 

- [ft 
ul = o~ xl = ~ u3 

- ü2 
u2 = 0 ~ x2 = Ü

3
, 

provided that ()3 f= 0. This point may not lie in the actual field of view of the camera. 
The velocity vector of the camera motion targets this point on the image plane. Then 
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Figure 14.7: Velocity field at the imageplane when the camera is moving towards a static scene. 

the camera moves towards or away from this point (figure 14. 7). Because of the distinct 
point z, it is useful to represent the velocity field in a new coordinate system whose 
origin is located at z. Using the coordinate transformation z 1 = z- z we yield 

()3 I 

ul =-x3 xl, 

or summarized as a vector equation 

()3 1 ()3 -u = --z = --(z- z). 
x3 x3 

{14.4) 

All velocity vectors are oriented towards or away from the point z. If all objects lie 
at the same distance, the magnitude of the velocity goes with the distance from z 
(figure 14.7). Therefore the point z is called the focus of expansion, or FOE. If the 
camera motion is parallel to the imageplane (U3 = 0), then the FOE lies in infinity. In 
this case, the velocity vectors on the image plane and in the three-dimensional world 
are parallel. The magnitude of the vector is then inversely proportional to the distance 
of the object from the camera (14.2). 

Relative Distance Measurement 
From a single image of a three-dimensional scene, we cannot teil the distance of the 
objects. Likewise, we cannot determine the absolute velocities of the camera in space 
from the velocity field on the image plane. However, from this velocity field we can 
determine the relative distance of objects. Let us assume two objects at the distances 
X3 and X3, respectively. Then from (14.4) we obtain 

X3 _ u1jx~ d X3 _ u2/x~ (14_5) 
x3 - udx~ an x3 - ft2/x~. 

This equation is only valid as long as U3 ~ 0, i. e., the FOE does not lie in the infinity. In 
this case, we get slightly simpler relations which can be derived from (14.2) for U3 = 0: 

X3 = ul and X3 u2 {14.6) 
x3 ft1 x3 = u2· 
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Then the apparent velocity of the object is inversely proportional to the distance from 
the camera. 

It is important to note that we can determine the relative distance of the objects 
without any knowledge about the velocity of the camera. We also do not need to know 
other parameters of the camera, such as the field of width or the focal length of the 
camera. 

Time to Contact 
In robotics and navigational systems, an important issue is the timely detection of 
potential collision with other objects. One important parameter is the time it takes for 
the navigated system to collide with one of the objects in its environment. This time 
can be estimated from the current relative speed of the vehicle towards the object. This 
quantity is called the time to contact, or briefly TTC. An estimate of the TTC is given 
as the ratio of the distance x3 and vertical Velocity u3 of the object. Then (14.4) yields 

X I I 

TTC = -...2. = xl = x2. 
u3 ul u2 

(14.7) 

As the relative distance measurement, the TTC determination does not require a 
calibrated camera system. 

14.2.2 Deformable Objects 

ModeHing an object as a mass point, as in the last section, helped us to gain a first 
impression of the relationship between motion in the real world and on the image plane. 
But it is too simplistic an approach to describe the motion of an object adequately. Real 
world objects do not only translate, but also rotate or might even be deformable. The 
latter has often been neglected- at least until recently- as the objects were modelled 
as rigid bodies which only underwent translation and rotation. 

In this section we explicitly want to include deformation, since we wish to provide a 
complete description of motion. The kinematics of the motion of deformable objects is 
a basicproblern of dassie continuum mechanics. The body is divided into small volume 
elements and we will investigate what happens to the volume element in the course of its 
motion. The fundamental theorem of kinematics states that we can describe the result 
of motion on the volume elements as a sum of translation, rotation and deformation 
[von Helmholtz, 1858]. This result is so important for motion analysis that we will 
demonstrate it in this section. 

Figure 14.8 shows the motion of a volume element. Within the time interval dt 
its origin moved from :r:(t) to :r:(t + dt). We denote the distance travelled by s(:r:). 
During the motion along the infinitesimal path s(:r:), the volume element has changed 
its orientation and shape (figure 14.8). We can describe these effects with the three basic 
vectors which span the volume element and change in both orientation and length. In 
total, the motion of a deformable volume element has twelve degrees of freedom: three 
in the translation vector and three in each basis vector spanning the volume element. 
We can also describe the motion of the volume element with the two vectors s ( :r:) and 
s( :r: + d:r: ), connecting the origin and the corner opposite. This description enables us 
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s(x + dx) 

Figure 14.8: Motion of a small volume element of an infinitesimal volume element of a deformable 
object. 

to describe the motion in an easy way. Since only infinitesimal changes are involved, 
we can expand s(:z: + d:z:) in a Taylor series and need only take the first-order terms 
into account: 

Defining the matrix A with the elements 

A-· _ 8s; ( ) 
,3 - ax; i,j = 1,2,3 

we can write 
s(:z: + d:z:) = s(:z:) + Ad:z:. (14.8) 

The nine components of the matrix contain all the nine degrees of freedom for the orien
tation and shape change of the volume element. In order to decompose the motion into 
the main motion types, we separate the matrix into its symmetric and antisymmetric 
parts: 

symmetric part: A" 
antisymmetric part: A a 

AT denotes the transpose of the matrix A. 

The Antisymmetrie Matrix {Rotation} 
The antisymmetric matrix A a reads 

A~- = .. 0 

= t(A+AT) 
= t(A-AT). 

Aii = ~ (8s; _ 8s;). 
2 8x; 8x; 
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Figure 14.9: Rotation a) versus shearing b) of the surface element of a volume element. 

This matrix shows only three degrees of freedom. The off-diagonal terms only contain 
cross-partial derivatives, i. e., changes perpendicular to the direction of the vector. Such 
changes typically occur with rotation. Rotation can be expressed by the vector w 

w =V' X s with w = (w11 w2,w3). 

The direction of w gives the direction of the rotation axis, while the magnitude of w 
denotes the angular velocity. Using w, the antisymmetric matrix Aareduces to 

For illustration, we consider the w3 component in detail (figure 14.9a). The differential 
displacements dx1 . 8s2/ ax1 and dx2 . 8sd ax2 cause a rotation of the corresponding 
edges dx1 and dx2 by the angles 11 and 12. Using these quantities, we can write 

- x2 - x1 
1 8s1 8s2 1 ax2 ax1 1 1 ( 

8s1 d 8s2d ) 

W3 = -- (-- -) = -- - = -- ( -12- 'Yd =- h1 + /2) · 
2 ax2 ax1 2 dx2 dx1 2 2 

Consequently, the mean of the two angles 11 and 12 denotes the differential rotation of 
the volume element around the x 3 axis (figure 14.9a). We can distinguish two principal 
cases: 
• 11 = 12: pure rotation; the shape of the surface element is not changed. 
• 11 = -12: results in w3 = 0, i. e., no rotation. The volume element is rather sheared. 

The Symmetrie Matrix (Deformation) 
The remaining symmetric part, A 8 , holds the diagonal elements 

s OSi 
Aii = -8 . 

Xi 

They denote the length change of the edges of the volume element. The off-diagonal 
elements read 

AB _ 1 (aSi 8Sj) ··-- -+-
'3 2 axj 8x; . 
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These elements describe the shearing of the volume elements. Let us discuss an example 
similar to that of rotation: 

Ai,2 gives the difference of the two angles /l and 72 . This angle difference describes the 
shearing of a surface element (figure 14.9b ). 

In total, deformation has six degrees of freedom, which we so far have decomposed 
into the length changes of the three edges of the volume element and the shearing of its 
three surface elements. Other useful decompositions are also possible. Each symmetric 
matrix can be diagonalized by a suitable transformation (see section 12.3): 

äs~ 
0 0 

äx~ 
Ös~ A•'= 0 0 
äx~ 

Ös~ 
0 0 

äx~ 

x~, x~, x; derrote the coordinates in the principal-axes system. 

Volume Dilation 
Deformation of the volume elements may result in a volume change of the moving 
object. The differential volume change is called the volume dilation 0v and is given by 
the divergence of the velocity field 

dV'-dV 
0v= dV ="ils=trace(A•), (14.9) 

which is equal to the sum of the diagonal elements or trace of the symmetric matrix 
A". The volume dilation is important since a number of moving objects, for example, 
incompressible flows, do not allow for volume dilations. 

Summary 
The general motion of an infinitesimal volume element of a deformable object can be 
divided into three principal components 

s(:c+d:c) 
Motion 

s(:c) + w x d:c + A•d:c 
Translation Rotation Deformation 

14.2.3 Kinematics of Projected Motion 

After the detailed discussion of motion concerning three dimensions, we can move on 
to the motion of deformable surfaces on the image plane. Now we think of the two
dimensional objects as being composed of infinitesimal surface elements and consider 
the differential changes which are caused by motion. The motion again is composed of 
translation, rotation, and deformation. The antisymmetric 2 x 2 matrix 
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contains only one degree of freedom, a rotation of the surface element around an axis 
normal to the imageplane (w3 ). A rotation about any other axis is not possible since 
it would rotate the surface element out of the image plane. Deformation is described 
by the symmetric 2 x 2-matrix 

This matrix has three independent elements, corresponding to three degrees of freedom 
for deformation. The coeflicients of the matrix do not coincide with principal types 
of deformation. Here we want to show that deformation of a surface element can be 
divided into surface dilation, area-conserving shearing and change of the aspect ratio. 

Surface dilation is given - similar to volume dilation in 3-D - by the divergence of 
the velocity field. The divergence is equal to the trace of the matrix A 8 • The trace of the 
matrix is invariant with respect to coordinate transformations. This corresponds to the 
fact that the area change must be independent of the coordinate system selected. Since 
surface dilation describes the area change of the surface element, the two other degrees 
of freedom for deformation conserve the area. Consequently, the matrices describing 
them must have the trace zero. This results in the following partition of the matrix: 

! ( os1 + os2) 0 
AB 2 ßx1 ßx2 

= 

0 ! ( 8s1 + 8s2) 
2 ßxl ox2 

! ( os1 _ os2) 0 
2 ox1 ox2 

+ 
1 ( ßs1 ßs2) 

(14.10) 
0 -- ---

2 OX1 OX2 

0 ! ( ßs1 + 8s2) 
2 ßx2 ßx1 

+ 
! ( 8s1 + 8s2) 0 
2 ßx2 ßx1 

The first matrix describes the area change, the second a form change without changes 
of the angles. The square is transferred into a reetangle with an equal area. The third 
matrix finally describes a shearing of the square to a rhombus. 

In summary, the velocity field contains six independent infinitesimal changes of the 
surface element (figure 14.10). 
• Translation; two degrees of freedom 
• Rotation around an axis normal to the image plane 

ßs2 8s1 
W3 = (~ X 8 )a = ~ - ~ = A21 - Al2· 

ux1 uX2 
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b) c) 

d) e) 

Figure 14.10: Basictypes of the motion of a surface element: a) translation; b) rotation; c) surface 
dilation; c) stretch; d) shearing. 

• Burface dilation 
os1 8s2 

8s = 'Vs =~+~=Au+ A22· 
ux1 ux2 

• Stretch under conservation of angles and area 

• Shearing under conservation of area and edge length 

14.3 Motion Dynamics 

So far we have only analyzed what kind of motions can occur, but not how an object 
actually moves under the influence of the forces it experiences, i.e., the dynamics of 
motion. The inclusion of the physical laws of motion into image sequence processing 
cannot be carried out if we only consider two consecutive images of a sequence, as only 
the momentary state of the velocity field would be obtained. The dynamic laws of 
motion, however, tell us how the velocity of an object changesunder the forces applied 
to it. The laws of motion, even for complex systems, are all based on Newton's first law 
which states that the temporal derivative of the velocity of a mass point, the acceleration 
a, is defined as the ratio of the force divided by the mass m 

F 
a=-. 

m 
(14.11) 

Thus the dynamics of motion can only be included if we extend the image sequence 
analysis to more than two images of a sequence. Consequently, the analysis of motion 
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in space-time images, as will be discussed in chapter 17, is not just an improvement, 
but a qualitative step ahead because: 
• Motion dynamics is a powerful tool which allows us to understand motion even if 

the motion information extracted from the images is sparse. Because of the inertia 
of the objects, motion only changes gradually, except in extreme cases like collisions 
between objects. 

• The inclusion of motion dynamics adds another level of abstraction to the image 
sequence analysis. In motion kinematics we would just describe the translation, rota
tion, and deformation of the observed object. Motion dynamics reveals the underlying 
laws which govern the motion of objects. We only need to know the initial positions 
and velocities of the objects and the forces acting between them tobe able to compute 
the motion. In this way, motion dynamics is a powerful tool for prediction. 

At this point, it is illustrative to compare image sequence processing and computer 
animations. In several respects, we have already found that image processing and 
analysis and computer graphics have much in common. Now analyzing image sequences, 
we become aware of the fact that they are essentially the same except for the fact that 
they are working in opposite directions (figure 14.11). In image sequence processing we 
start with an image sequence from which we want to extract the motion of the objects 
to understand what is going on in the observed scene. In computer animation, a two
dimensional image sequence is produced which is projected from a three-dimensional 
model of the scene. 

Figure 14.11 shows that the similarities in the approaches both in computer ani
mations and image sequence processing remain down to the finest details. A better 
understanding of the underlying processes leads to more realistic animations in com
puter graphics and enhances our ability to extract the motion of objects in image 
sequence analysis. Despite all these similarities, an integral scientific approach to com
puter graphics and image processing is still missing. It is encouraging to see, however, 
that progress in both areas is closely linked. At about the time when motion dynamics 
were included into image sequence processing, physically based modeHing emerged in 
computer animations. 

14.4 Motion Models 

In the previous sections of this chapter we discussed the kinematics and dynamics of the 
motion for two- and three-dimensional motion separately. Now we turn to the question 
how we can compute the three-dimensional velocity field from the two-dimensional 
velocity field on the image plane. Generally, this is an underdetermined problern which 
cannot be solved unambiguously. 

However, we can solve it if we add global information. We make use of the fact 
that all displacement vectors found in a certain area belong to an object, so that the 
individual points of the objects move in a coherent way consistent to the properties of 
the object. We will discuss two possible ways of representing the objects. We can either 
compose them as a collection of points or a collection of planar surface patches. 
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Figure 14.11: Comparison between image sequence processing and computer animation. 

14.4.1 Motion of Points 

Generally, a description of the motion of a point in 3-D space requires 6 parameters, 3 
for the position and 3 for the velocity (table 14.4). On the image plane, we have only 4 
parameters, 2 for the position and 2 for the velocity (table 14.4). As a result, for each 
point we obtain only 4 equations for 6 unknowns. However, if we know that the points 
belong to an object, we get additional constraints, which - at least in principle -
allow us to extract both the position and motion of the object in the three-dimensional 
space. 

As a simple example, we discuss the motion of a rigid body with n points. Instead of 
3n degrees of freedom for the motion of n disconnected points, we obtain only 6 degrees 
of freedom, 3 for translation and 3 for rotation, independent of the number of points. 
Each projected point yields four variables. In conclusion, we obtain 4n equations for 
6 + 3n unknowns. At least 6 points are necessary to determine the motion parameters 
and the positions of the points in space unambiguously. So far, the problern looks easy. 
It is not, however, because the equations turn out tobe nonlinear. Let us assume that 
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Table 14.1: Summary of the degrees of freedom for two- and three-dimensional motion with different 
motion models. 

Structure Motion Sum 
Position Orientation Translation Rotation Deformation 

Motion of individual points 

~3-D 
I 

3 

I 
3 3+3=6 

2 2 2+2=4 2-D 
3-D motion of deformable volume elements 

I Vu=O I 
3 3 

I 
3 3 6 16 + 12 = 181 

3 3 3 3 5 6+11=17 
3-D motion of planar surfaces of rigid bodies 

I I 3 2 I 3 3 5+6=11 
Cross section through an incompressible 3-D fiow 

I I 2 I 3 3 5 12 + 11 = 13 1 

Motion of deformable surface elements 

I I 2 I 2 1 3 I 2+6=8 I 

the origin of the coordinate systemslies in the center of gravity of the object. Then we 
obtain the velocity field 

U(x) = (:t + (}x) X= Ut + (} x X. (14.12) 

Using (2.7) for the perspective projection, we obtain the two-dimensional velocity field 
on the image plane 

u1 = (~~- x1 ~:) + ( -x1x2f11 + (1 + xi)!h- x2n3) 

u2 = (~:- x2 ~:) + ( -(1 + xDni + x1x2f12 + x1n3). 

(14.13) 

The projection equations are nonlinear, since the unknown X 3 appears in the de
nominator. Therefore the solution of an equation system with many of these equations 
is not straightforward. Many different approaches are discussed in the literature. Sum
marized discussions can be found in Nagel [1981] and Aggarwal [1986]. 

Since the nonlinearity basically results from the missing depth information, it seems 
reasonable to merge motion analysis and stereo imaging [Waxman and Duncan, 1986]. 
By using stereo images, we directly extract the three-dimensional positions and ve
locities. At first glance, we might think that it is now simple to extract the motion 
parameters of the rigid body. Let a rigid body rotate around its center of gravity X • 
with the angular Velocity n. Let the translation of the center of gravity be u •. Then 
the velocity at an arbitrary point X is given by 

U(X) = U, + (} x (X- X.). (14.14) 
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1 
+ 

Figure 14.12: Ambiguity of the translation of the center of gravity and the rotation axis: (l x X and 
(l x X,+ (l x (X- X,) result in the same3-D velocity field. 

Figure 14.13: Representation of an opaque 3-D object by surface elements. 

From this equation, we see that we cannot unambiguously determine the rotational 
axis and the translation of the center of gravity, because U s - !1 X X s results in a 
nondecomposable new constant even if !1 is known. 

The determination of the angular velocity is also not trivial. By subtraction of the 
velocity of two points 

{14.15) 

we can eliminate U, and X 8 , but we cannot determine the component of the angular 
velocity which is parallel to the position difference X 2 - X 1 , since for this component 
the vector product vanishes. Thus we need at least three points which may not lie on 
a line. 

14.4.2 Motion of Planar Surfaces 

Generally, objects are opaque so that all the points we observe lie on the surface of 
the object. We can make use of this fact if we approximate the surface of the object 
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by small planar facets. The same technique is used in computer graphics to represent 
opaque 3-D objects. Each surface element is determined by its position in space and 
its orientation (unit vector normal to the surface, figure 14.13). If we assume that the 
object is rigid, the surface elements are not deformed. Thus we need 11 parameters 
to describe their motion: 3 for position, 2 for orientation, 3 for translation and 3 for 
rotation (table 14.4). Surface elements are a useful description, since they remain 
surface elements in the projection. In the projection, however, they may be deformed. 
Thus we need to consider the most general 2-D motion on the imageplane which has 8 
degrees of freedom (table 14.4). Thus, even under the constraint of rigid surfaces, the 
reconstruction problern remains underdetermined for a single surface element. 

The most interesting question arising from this approach is how the different types 
of motion in 3-D (translation and rotation) are mapped onto the types of motion in 
2-D (translation, rotation and deformation). 

Translation 
The translation of the surface element is directly given by (14.13). No easy inter
pretation is possible. The u1 and u 2 components of the 2-D velocity :field include 
ub u3, nb n2, n3 and u2, u3, nb n2, n3, respectively. 

Rotation 
For 2-D rotation, we only can compute the component w3 from (14.13): 

(14.16) 

In this formula we partly used x~, x~ Coordinates, where the origin coincides with the 
focus of expansion (see section 14.2.1). Rotation around an axis normal to the image 
plane (!13 ) is directly mapped onto the corresponding rotation in the projection (w3 ). 

There are, however, two additional terms which result in a complex rotation :field: 
• Rotation around an axis parallel to the image plane results in a term which is pro

portional to the distance from the rotation axis. This termissmall or even negligible 
for small :fields of view ( x1,2 ~ 1). 

• As soon as the surface elements are sloped and U3 =f 0, a local rotation appears 
which is proportional to the distance from the focus of expansion and the slope of 
the surface elements. 

Burface Dilation 
2u3 u3 ( I ax3 I ax3) 

E>. = Vu = - X3 + X~ xl axl + x2 8x2 + 3(x1D2- x2Dl) (14.17) 

Surface dilation is composed of the following terms: 
• A constant term caused by the translation normal to the image plane. 
• A term which results from the rotation around the axis parallel to the image plane. 

As for w3 this term is proportional to the distance from the rotation axis. 
• Another term which depends on the slope of the surface elements with respect to 

the image plane, the velocity normal to the image plane, u3, and the distance to the 
focus of extension. 
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Area-Conserving Deformation 
Shearing and stretching of the surface elements are given by 

(14.18) 

(14.19) 

These two deformation terms result from the translation normal to the image plane 
and from the rotation about an axis parallel to the image plane. 

Concluding Remarks 
The first order terrns of the 3-D velocity field (rotation and deformation) map onto 
the corresponding terms of the two-dimensional velocity field on the image plane in a 
complex manner. Nevertheless, we can draw some useful conclusions. The relations 
become much simpler, when x 1,2 ~ 1, i. e., if we use a camera with a narrow field of 
view. Within the limit of x 1,2 -+ 0, the perspective projection becomes an orthoscopic 
projection. 

14.4.3 Motion in Cross-Sectional Images 

Motion analysis becomes a very complex issue if the objects in 3-D space are trans
parent. At one point on the image plane, projections of motions from different depths 
are superimposed. As we discussed in section 13.3, in such a case it is not possible to 
reconstruct the 3-D object from a single projection. Likewise, we ca.nnot reconstruct 
the 3-D velocity field. 

For these cases, we can use techniques to obtain cross-sectional images by illumi
nating only a thin sheet normal to the optical axis of the camera. This technique is 
widely applied in :flow visualization (see sections 1.4 and 2.2.8). With cross-sectional 
images we do obtain velocity information, but as a result a) the velocity component 
normal to the image plane is lost and b) the velocity field is limited to a certain depth. 
Therefore, we need to be very careful in interpreting the results. 
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15.1 Introduction 

In the last chapter we worked out the basic knowledge which is necessary for a successful 
motion analysis. Depending on the motion model used, we either need to determine the 
displacement vectors (DV) at single points, or the displacement vector field (DVF) in 
order to compute the first-order spatial derivatives (rotation and deformation terms). 

In this chapter we discuss the determination of individual DVs, while we turn in 
chapter 16 to the determination of continuous DVFs. This separation is logical, since 
it is obvious, from our considerations in section 14.1, that we cannot determine dis
placement vectors all over the image. Thus the determination of a continuous DVF is 
a complex task. We need to interpolate a velocity field from individual DVs that are 
incompletely determined. 

In this chapter we discuss the two basic approaches to compute displacement vectors 
from two consecutive images. 
1. Differential Approaches: Differential methods start from the basic fact that motion 

involves gray value changes. These methods try to estimate the displacement vec
tor directly from the gray value images. This approach attempts to gain as much 
information on the velocity field as possible. 

2. Gorrelation Approaches: In contrast to the differential approach, we first select fea
tures from which we could expect an unambiguous determination of the displacement 
vector. This approach omits all questionable image regions from the beginning. In 
a second step, we try to find the corresponding selected features in both images. 
The flexibility and success of this approach lies in adequate selection of the correct 
features. If these do not depend on the illumination, we should get a robust estimate 
of the displacement vector. We need to analyze carefully how much motion-relevant 
information is discarded this way. It is crucial to ensure that no essential information 
is eliminated. 

At first glance both methods look very different, and we can understand why the 
two different approaches are criticized. Our discussions in this chapter will show that 
both methods have significant deficits and are not as different as they may appear at 
first glance. They look at the problern of motion analysis from different points of view, 
but neither of them adequately handles the whole complexity of the problem. 
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X 

Figure 15.1: Illustration of the differential method to determine motion in the one-dimensional case. 

15.2 Differential Methods 

15.2.1 Optical Flux 

The differential method is based on the continuity of the so-called optical fiux. This 
concept has been formulated in a similar manner as in fluid dynamics. In case of images, 
motion causes gray values, i. e., an optical signal, to "flow" over the image plane, just 
as volume elements flow in liquids and gases. In fluid dynamics the continuity equation 
plays an important role. It expresses the fact that mass is conserved in a flow. Can we 
formulate a similar continuity equation for gray values? Are they conserved, or more 
precisely, under which conditions are they conserved? 

In fluid dynamics, the continuity equation for the density (! of the fluid is given by 

ae ae at +\7(ue)= at +u\7e+e\7u=0. (15.1) 

This equation is valid for two and three dimensional flows. It states the conservation of 
mass in a fluid in a differential form. The temporal change in the density is balanced 
by the divergence of the flux density U(!. By integrating the continuity equation over 
an arbitrary volume element, we can write the equation in an integral form 

(15.2) 

The volume integral has been converted into a surface integral around the volume using 
the Gauss integral theorem. da is a vector normal to a surface element dA. The integral 
form of the continuity equation clearly states that the temporal change of the mass is 
caused by the net flux into the volume integrated over the whole surface of the volume. 

How can we draft a similar continuity equation for the optical flux? We may just 
replace the density (! by the gray value g. However, we should be careful and examine 
the terms in (15.1) more closely. The left divergence term u\7g is correct. It describes 
the temporal change of the gray value by a moving gray value gradient. The second 
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light source caiilera light source 

caiilera 

Figure 15.2: a) Backscatter oflight from a diffusive reflecting surface element; b) same but for a mirror 
surface. 

term with the divergence of the velocity field e'Vu seems questionable. It would cause 
a temporal change even in a region with a constant gray value if the divergence of the 
flow field is unequal to zero. However, gray values do not accumulate as the mass in a 
:flow. Thus we omit the last term in the continuity equation for the optical term and 
obtain 

og 
ot +u'Vg = 0. (15.3) 

In the one-dimensional case, the continuity of the optical :flow takes the simple form 

from which we can directly determine the one-dimensional velocity 

u=-og/og 
at ax' 

(15.4) 

(15.5) 

provided that the spatial derivative does not vanish. The velocity is given as the 
ratio of the temporal and spatial derivatives. This basic relation can also be derived 
geometrically, as illustrated in figure 15.1. In the time interval dt a gray value is shifted 
the distance dx = udt causing the gray value to change by g(t)- g(t + dt). The gray 
value change can also be expressed as the slope of the gray value edge, 

og og 
g(t)- g(t + dt) = ox dx = ox udt, (15.6) 

from which we readily obtain the continuity of the optical flux (15.4). 
Before we turn to the two-dimensional case, we discuss under which conditions the 

continuity of the optical :flow is met. From our discussion on gray value changes in 
section 14.1.1, we are aware of the many effects which may cause gray value changes in 
images. With four examples, we will illustrate the complexity of the problem. 
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Diffusive Refiecting Objects in Parallel Light 
We assume that a scene is illuminated with parallel light, for example, direct sunlight in 
an outdoor scene. Then the illumination of an object neither changes with its distance 
from the light source nor with the distance from the camera. We further presume that 
the surfaces of the objects are Lambertian reflectors, i. e., that the surface brightness 
does not depend on the angle of view (see section 2.1.5). Even under these Straightfor
ward illumination conditions, we run into problems with the continuity of the optical 
flux, since the surface brightness depends on the angle f between the surface normal 
and the light beam (figure 15.2a): 

g = g0 cos f. 

Consequently, a rotation of the surface element will change its brightness: 

8g . 8t: 
- = -g0 smt: -. at at 

(15.7) 

(15.8) 

These effects are only small if the surface elements are oriented towards the camera. 

Diffusive Refiecting Objects in Divergent Light 
In divergent light, e. g., the illumination of the scene by a point source, the brightness 
of the objects depends on their distance from the light source. Let us assume that 
the lamp is located in the origin of the camera coordinate system. Then the surface 
brightness of the object is given by 

.f2 
3 g = g0 COSE-2 . x3 (15.9) 

With X3 we denote a reference distance at which the object shows the brightness g0 • 

Since the brightness depends on X 3 , motion normal to the image plane results in a 
change of the brightness 

(15.10) 

Light Emitting Surfaces 
A light emitting surface does not incur any additional term in the continuity equation as 
long as it emits the light isotropically and its image is larger than one pixel. If the latter 
condition is not met, the brightness of the object will decrease with the distance squared 
and a term similar tothat in (15.9) must be considered. Isotropically emitting surfaces 
occur in thermal imaging, where surface temperatures are measured by the radiation 
emitted in the far infrared (3-20 llm wavelength; see section 1.2.1 and figure 4.2). 

Specular Reflexes 
Things become even more complex if the objects reflect like mirrors. Then we see 
bright spots, so-called specular refiexes at those positions of the object where the surface 
normal halves the angle between the light beam from the light source to the object point 
and the light beam back to the camera (figure 15.2b). 

A small rotation of the object surface with a low curvature causes the specular 
reflexes to move to another position on the object. It is also possible that the specular 
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refiex remains stationary although the object is moving. This is the case, for example, 
if a cylindric object is spinning around its symmetry axis. 

Consequently, specular refiexes do not move with the object. Rather their position is 
determined by the inclination of the surface element with regard to the light sources and 
the camera {figure 15.2b ). Specular refiexes distort motion determination significantly. 
Therefore it is necessary either to avoid or to detect them and to exclude the image 
regions affected from being interpreted as the motion of the object. 

For the continuity of the optical fiow, specular refiexes appear only as a disturbing 
element. Nevertheless, they carry important information, namely the inclination of the 
refiecting surface element. In this way, Cox and Munk [1954] determined the slope 
statistics of the ocean surface from sun glitter images taken from an airplane. More 
recently, Jähne and Waas [1989] deviced a stereo imaging system to perform combined 
slope-height measurements of the sea surface roughness using specular refiexes {see also 
plate 6b). 

Concluding Remarks 
The four examples discussed substantiate the fact that the continuity of the optical fiux 
depends to a great extent on the illumination conditions and the refiection properties of 
the objects observed. We cannot establish a generallyvalid continuity equation. Only 
in very restricted cases, such as isotropically emitting objects, is the simple continuity 
equation {15.3) valid. In case of Lambertian surfaces and a point source in the origin 
of the camera coordinate system, the following continuity equation is valid: 

ag . aE u3 
~ + u\lg + gosmE!:! + 2g- = 0. 
ut ut x3 {15.11) 

If the gray value gradient is large, the infiuence of the two additional terms is small. 
Thus we can conclude that the determination of the velocity is most reliable for steep 
gray value edges while it may be significantly distorted in regions with only small gray 
value gradients. 

For scientific applications of image sequence processing which require accurate ve
locity measurements a proper illumination of the experimental setup is important. In 
many cases we can arrange the illumination in such a way that the simple continuity 
equation {15.3) for the optical fiux is met. In section 1.4 we discussed the imaging of 
water surface waves. In this case, the illumination could be set up in such a way that 
the intensity is proportional to the wave slope [Jähne and Riemer, 1990]. Thus the 
measured gray values directly represent a physical property and are not sensitive to 
secondary effects in the illumination of the scene. 

In the following we will use the simple continuity equation exclusively. Thus we 
should keep in mind that the inferred results are only valid if the continuity of the 
optical fiux is preserved in this form. 

15.2.2 Least Squares Solution of the Aperture Problem 

The continuity equation for the optical fiux in the n-dimensional space contains n 
unknowns in a scalar equation. Thus we cannot determine the velocity unambiguously. 
The scalar product u V g is equal to the magnitude of the gray value gradient multiplied 
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by the velocity component in the direction of the gradient, i. e., normal to the local gray 
value edge 

u'\lg = u.LI'\/gl. 

This is the quantitative formulation of the aperture problern which we already discussed 
in section 14.1.2. Then we stated that we can only determine the velocity component 
normal to the edge. From the contimiity of the optical flow we obtain 

U.L =- ~~ /IVgl. (15.12) 

With this approach it is not possible to determine the complete velocity vector. In order 
to do so, we need a larger neighborhood in which the gray value gradient is directed 
in different directions. We assume that we pick out N points from a two-dimensional 
neighborhood M in which the velocity does not change significantly. Then we obtain 
N continuity equations for the N points in the neighborhood M: 

9t(k, l) + U19x1 (k, l) + U29x2(k, l) = 0 V (k, l) E M. (15.13) 

For compact equations, we abbreviate the partial derivatives with an index denoting 
the derivator. The indices (k, 1) denote the spatial position in the mask. In this way, 
we obtain N equations for the two unknowns ( u 1 , u2 ). In matrix representation, the 
linear equation system reads 

r 
9xl (1) 9x2(1) l r 9t(1) 1 
9x1:(2) 9x2:(2) [ ~~ ] = _ 9t~2) . 

9xl(N) 9x2(N) 9t(N) 

(15.14) 

The points in the mask are counted linearly from 1 to N in this equation. 

The Exact Linear Equation System 
First we discuss the exactly soluble equation system when we take only two points 
(N = 2): 

(15.15) 

Formally, we obtain a solution of the equation by inverting the matrix which contains 
the partial derivatives 

The inverse of the matrix exists if and only if its determinant does not vanish: 

I 9x1(1) 9x2(1) I# O "'-+ 

9xl (2) 9x2 (2) 

9x1(1)9x2(2) # 9x2(1)gx1(2) or :::~~~ # :::g~. 

(15.16) 

(15.17) 

From these condition we conclude that we can solve the equation system provided 
• the magnitudes of both gradients do not vanish and 
• the gradients are not oriented in the same direction. 
Geometrically, this means that a curved edge must cross the neighborhood. 
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The Overdetermined Equation System 
The exact equation system shows the disadvantage that we cannot perform any error 
analysis. This is a significant drawback since the real gray values contain always a cer
tain level of noise. For further analysis of the estimated velocities, it is also important 
to know the certainties of the estimated velocities. An overdetermined linear equation 
system allows such an error analysis. This problern is mathematically similar to the al
gebraic reconstruction from projections discussed in section 13.3.4. In matrix notation, 
the linear equation system reduces to 

G u -gt 
Nx2 2 N 

In the equation the dimensions are marked. With an overdetermined equation system, 
we cannot compute an exact solution, but only an optimal solution u which minimizes 
the norm of an error vector e. As in section 13.3.4, we use the method of the least 
squares 

llell2 = II - Yt- Gull2 --+Minimum. (15.18) 

The solution ofthisinverse problern is given by (section 13.3.4 and appendix A.1): 

(15.19) 

with the pseudo inverse 
(15.20) 

We obtain a solution if we can invert the 2 x 2-matrix GT G. This matrix is given by 

[ 9x,(1) 9x1 (2) 
9x2(1) 9x2(2) 

N 

z=g;, (k) 
k=l 

N 

9x1 (N) ] 
9x2(N) 

N 

[ 

9x,(1) 9x2(1) 1 
9x, (2) 9x2 (2) 

. . . . . . 
9x,(N) 9x2(N) 

Z:9x1 ( k )9x2 ( k) 
k=l 

N 

L9x, ( k )gx2 ( k) L9;2(k) 
k=l k=l 

This matrix can be inverted if 

From this equation, we can deduce two conditions which must be met: 

(15.21) 

(15.22) 

• Notall partial derivatives 9x, and 9x2 must be zero. In other words, the neighborhood 
may not consist of an area with constant gray values. 

• The gradients must not point in the same direction. If this were the case, we could 
express 9x2 by 9x1 except for a constant factor and the determinant of GT G (15.22) 
would vanish. 
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In order to simplify the equations further, we introduce the following abbreviation 

N 

Gpq = L9p(k)gq(k), (15.23) 
k=1 

where 9p and 9q stand for any partial derivative of g. With these abbreviations, the 
inverse of GT G reduces to 

(15.24) 

Using (15.19) and (15.20) it reads 

it = -(GTGt1 GTYt· (15.25) 

In order to obtain the final estimate, we first multiply the matrix G with the vector g 
containing the temporal derivatives 

(15.26) 

Then we multiply the matrix (GTG)-1 with this vector and obtain 

(15.27) 

The error of the estimated velocity vector can be computed easily. The diagonal ele
ments of (GTG)-1 contain the variance of the corresponding model parameters except 
for one factor, the variance of the data 

(15.28) 

The variance of the data can be estimated from the error vector 

{15.29) 

The computations performed allow a detailed analysis of the least squares approach. 
The critical parameter is the determinant of the matrix GT G. As long as the determi
nant does not vanish, we can compute both components of the velocity vector. If the 
determinant is close to zero, i. e., the matrix is close to being singular, the errors in it 
are large {15.28). The error will be minimal if the cross correlation terms G.,1 .,2 vanish. 
This is the case, when the gray value gradients are equally distributed in all directions. 
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Since the matrix ( GT G)-1 is symmetric, we can diagonalize it by a suitable coor
dinate transformation (see section 12.3). The axes of the principal coordinate system 
are oriented along the directions of the maximum and minimum sum of squared spatial 
derivatives. In this coordinate system, the equations for u (15.27) and its variance 
(15.28) reduce to 

(15.30) 

(15.31) 

These equations are very similar to the simple solution for velocity in the one-dimensional 
case (15.5) and the one-point solution for the velocity component in the direction of 
the gray value gradient (15.12). We can see this as being even more pronounced if we 
slightly rewrite {15.30) 

N 

L9~1 (k)(gt(k)fg.,1 (k)) 
k=l . 

N (15.32) 
L9~~ (k)(gt(k)/ g.,~ (k)) 
k=l 

The velocity results from the ratio of the temporal to the corresponding spatial 
derivatives. The contribution at each point k in the neighborhood, 9t(k)fg.,1 (k) (com
pare (15.5)), is weighted by the square of the partial derivative. Such a weighting makes 
sense, since we can detect displacement more accurately if the gray value gradient is 
steeper. The averaging in (15.32) is equivalent to averaging a set of data points with 
individual errors. The weighting factor w(k), which in (15.32) is g~,, is generally equal 

1 
to the inverse of the variance of the data points. 

These equations allow us to analyze the accuracy of the velocity estimate. The error 
will be small if 
• the gray value gradients are equally distributed in all directions (in other words, the 

neighborhood must not be locally oriented; see chapter 7), 
• the mean squared gray value gradient is large, 
• the neighborhood is large, and 
• the data variance is small. 

The data variance is composed of two terms of completely different nature. The first 
is related to the noise in the gray values which may be caused either by sensor noise or 
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by quantization. The second term mirrors how weil the given gray value distribution 
in the two images coincides with the presumptions. 

At this point we should remind ourselves that all our considerations are based on 
the assumption that the velocity :field is constant within the chosen mask size. If this 
condition is met, the estimated data variance according to (15.29) should be comparable 
to the noise variance in the image. Thus a significantly larger variance is a clear indicator 
that the velocity field is not constant because the neighborhood contains, for example, 
a discontinuity in the velocity field. Such discontinuities occur at the edges of objects. 
Then a neighborhood contains two regions which move with different velocities. These 
considerations emphasize the importance of error estimates. They allow us to check 
our model assumptions. Here we assumed that the velocity field is constant in a local 
neighborhood. 

We conclude our considerations about the least-squares method with some general 
remarks. The solubility of the linear equation system depends only on the invertibility 
of the matrix GT G. In this matrix only spatial but not temporal derivatives occur. 
This means that the spatial derivatives entirely determine whether and how accurately 
the velocity can be estimated. 

The least-squares method is very flexible. We can use any linear model of the velocity 
field in the local neighborhood to be investigated. So far, we have used the simplest 
model we can think of: a constant velocity field. As a second example, we consider how 
we can integrate our considerations on the kinematics of the two-dimensional velocity 
:field (section 14.2.3) into the least-squares approach. Our model of the velocity field 
then incorporates a first order Taylor expansion with linear variations in the distance 
from the center of the neighborhood 

u = ü + Aßz, 

where the matrix A includes all possible types of motion as discussed in section 14.2.3. 
ßx denotes the distance from the center of the neighborhood. Instead of two, we now 
have six unknowns. The continuity equation for the optical flux at the point k is given 
by 

(ü + Aßz(k))Vg(k) = -gt(k). 

For N points we obtain the following linear equation system: 

9z{l) 9y{l) dx{l)gz(l) dy(l)gz(l) dx(l)gy(l) dy(l)gy(l) ih 9t(1) 
u2 

9t(2) 9z(2) 9y(2) dx(2)gz(2) dy(2)gz(2) dx(2)gy(2) dy(2)gy(2) 
an 

= 
a12 

a21 
9t(N) 9z(N) gy(N) dx(N)gz(N) dy(N)gz(N) dx(N)gy(N) dy(N)gy(N) 

a22 

For the sake of simplicity, we replaced x1 and x 2 by x and y, respectively. The structure 
of this more complex linear equation system is very similar to the equation system for 
the simple model with a constant velocity field (15.14). Again, the solubility only 
depends on the invertibility of the matrix G. This time, the invertibility not only 
depends on the spatial structure of the gray values but also on the selection of the 
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Figure 15.3: Geometrie illustration of the solution of a linear equation system with three unknowns 
using the Rough transform: a) exact soluble equation system; b) singular overdetermined equation 
system with a matrix of rank two. 

points. If all the points selected in the neighborhood lie on a line parallel to the x 1 axis, 
we cannot determine the spatial change of the velocity :field in the x 2 direction. 

An approach of this kind which includes planar rotation and surface dilation, i. e., 
only two of the four terms of the matrix A, has been described by Schalkoff and Mc Vey 
[1982] and Schalkoff and Labuz [1984]. The more parameters are contained in a model, 
the more likely the model matrix will become singular. This will already be the case if 
only one parameter or a certain linear combination of parameters cannot be determined 
- as in case of the aperture problern where the velocity component is along the edge. 

We can illustrate this problern using the Hough transform (see section 13.3.4). In 
case of a three-dimensional model, each equation of the linear equation system can be 
regarded as a plane in the three-dimensional parameter space. If the matrix is invertible, 
the three planes will intersect at a point (figure 15.3a). The coordinates of this point 
are the solution of the linear equation system. 

Even in an overdetermined case, the solution needs not necessarily be unique. As 
illustrated in figure 15.3b, allplanes may intersectat a common line. Then the solution 
is not restricted to a unique point, but only to a line. If this line is oriented along one 
of the axes, this parameter may take any value; the other two parameters, however, 
are fixed. In case of an arbitrary orientation of the line, things are more complex. 
Then the parameter combinations normal to the line are :fixed, the parameter combi
nation represented by a vector in the direction of the line is not. Using the singular 
value decomposition [Press et al., 1988 and Golub and van Loan, 1989] we can solve 
singular linear equation systems and separate the solvable and unsolvable parameter 
combinations. 
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15.2.3 Differential Geometrie Modeling 

In the last section we learnt that the spatial structure of the gray values governs the 
determination of motion. Our approach so far does not adequately account for this 
basic fact since we just computed the gray value gradients at some points of a local 
neighborhood. We found that a unique determination of the velocity is only possible if 
the local neighborhood contains gradients in different directions. If gradients change, 
second derivatives must be unequal to zero. This being so, the second derivatives 
connect the isolated points. 

These considerations pave the way for another approach to the motion problem. 
We try to account for the spatial gray value structure as necessary. In other words, we 
try to model it adequately. Our mathematical tool is differential geometry. We assume 
that the gray value structure in the two consecutive images differs only by a locally 
constant displacement s: 

g ( x - ~s, ft) = g ( x + ~s, t2) . (15.33) 

This approach assumes only a translation of the image and neglects any rotation or 
deformation of surface elements. We simply assume that the velocity field is locally 
constant. For the sake of symmetry, we divided the displacement evenly among the two 
images. With the assumption that the displacement vector s and the size of the surface 
element are small, we can expand the gray value in both images at the point x = 0 in 
a Taylor expansion. First we consider a first-order expansion, i. e., we approximate the 
gray value distribution by a plane 

g ( x ± ~s) = go + 'Vg ( x ± ~s). (15.34) 

The planes in both images must be identical except for the displacement s. We sort 
the term in (15.33) in increasing powers of x in ordertobe able to perform a coefficient 
comparison 

g(x±~s) =g0 ±~'Vg s+ 'Vg x. 
"----...--' ......._.. 

ff t slope o se 

(15.35) 

The first and second term contain the offset and slope of the plane, respectively. We can 
now estimate the displacement s from the condition that both planes must be identical. 
Consequently, the two coe:fficients must be identical and we obtain two equations: 

9o(ti)- 9o(t2) 

'V g( ti) 

! ('Vg(t!) + 'Vg(t2)) s, 

'V g(t2)· 
(15.36) 

The second equation states that the gradient must be equal in both images. Otherwise, 
a plane fit of the spatial gray value does not seem to be a useful representation. The 
first equation corresponds to the continuity of the optical flux (15.3). In (15.35) only 
the temporal derivative is already expressed in a discrete manner as the difference of 
the mean gray values in both images. Another refinement is also due to the digitization 
of time. The gradient is replaced by the mean gradient of both images. Moreover, we 
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use the displacement vector s instead of the velocity u. As expected, a plane fit of the 
gray value distribution does not yield anything new. We arestill only able to estimate 
the velocity component in the direction of the gray value gradient. 

Therefore we perform a second-order Taylor expansion 

9o 

+ 
(15.37) 

+ 9x1x 2 (x1 ± !s1) (x2 ± !s2). 
A comparison of the coe:fficients of the second-order fit yields six equations in total. 

The quadratic terms yield three equations which state that all second-order spatial 
derivatives must coincide in both images: 

Yx1x1 (tl) 

Yx2x2 (tl) 

Yx1x2 (tt} 

Yx1x1 ( t2), 

Yx2x2(t2), 

Yx1x2 ( t2 ). 

If this is not the case, the second-order fit to the gray value distribution either does not 
adequately fit the gray value distribution or the presumption of a constant displacement 
in the neighborhood is not valid. The coe:fficient comparison of the zero- and first-order 
terms results in the following three equations: 

(15.38) 
Surprisingly, the coe:fficient comparison for the zero-order term ( offset) yields the same 
result as the plane fit (15.35). This means that the displacement vector is computed 
correctly by a simple plane fit, even if the gray value distribution is not Ionger adequately 
fitted by a plane but by a second-order polynomial. 

The two other equations can be composed into a simple linear equation system with 
two unknowns 

[ 
Yx1x1 Yx1x2] [ S1 l = _ [ Yx1 (t2)- 9x1 (tt) ]· 
Yx1x2 9x2X2 82 Yx2 ( t2) - Yx2 ( t1) 

(15.39) 

We can easily invert the 2 x 2 matrix similar to the inversion of the matrix ( GT G) 

in (15.21) and (15.24), provided 9x1x 19x2x2 - g~1x2 does not vanish 

(15.40) 
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G 
G 

Figure 15.4: a) Sketch of a gray value extremum: the first-order spatial derivatives are zero while the 
second-order derivatives do not vanish. b) gray value corner; the local coordinate system is oriented in 
such a way that the x1 axis coincides with the direction of the steepest gray value ascent (gradient); 
after Nagel (1983). 

and obtain the following solution for 8 

(15.41) 

Therefore it is possible to estimate the displacement between two images from a local 
neighborhood if we take into account the curvatures of the gray value distribution. We 
have not yet discussed the conditions the gray value distribution must meet, so that 
we can invert (15.39). In this way we will relate the determination of the displacement 
vector to the differential geometry of a local neighborhood. We investigate two typical 
gray value structures, a gray value extremum and a gray value corner. Both terms have 
been coined by Nagel [1983]. 

Gray Value Extremum 
A gray value extrem um is a point at which the first-order spatial derivatives vanish, but 
the second-order derivatives do not (figure 15.4a). Thus a simple model for the gray 
value is given by the polynomial 

g(z) = g0 - bxi- cx~ . 

We set the extremum in the first image at z = 0; thus in the second image it is shifted 
by 8. We yield the following values for the spatial derivatives in both images 

9x, (tl) = 9x2(tt) 0 

9x1 (t2) = -2bsl # 0 

9x2 (t2) = -2cs2 # 0 

9x,x, (tt) = 9x1 x1 (t2) = -2b # 0 

9x2x2(tt) = 9x2x2(t2) = - 2c # 0 

9x,x2 (tl) = 9x,x2(t2) 0. 
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Since the matrix in (15.38) is already diagonal (gx1x2(ti) = 9x1x2(t2) = 0), the displace
ment vector s reduces to 

(15.42) 

We would obtain no solution, if one of the curvatures is zero. In this case the gray value 
structure is a valley or a ridge. We would only yield the component of the displacement 
normal to the ridge. In the other direction we can shift by an arbitrary distance and 
still match the gray value structures in the two images. 

Gray Value Corner 
The missing component can be computed if the valley or ridge is inclined. Geometrically, 
such a structure forms a gray value corner (figure 15.4b ). We saw in our introductionary 
discussion on motion analysis (section 14.1.2) that we can estimate the displacement 
vector completely at a gray value corner. We orient the coordinate system in such a 
way that the steepest ascent is oriented in the x1 direction. Then we can model a gray 
value corner by 

g(:z:) = go + bx1 + cx~. 
The first- and second-order spatial derivatives in the first and second image meet the 
following conditions: 

9xt (tt) = 9xt (t2) = b :f 0 

9x2(tt) 0 

9x2(t2) = -2cs2 :f 0 

9x,x,(tt) = 9x1x1 (t2) 0 

9x2x2(lt) = 9x2x2(t2) = -2c :f 0 

9xtx2(tt) = 9xtx2(t2) 0. 

From the linear equation system (15.38), we only obtain the s2 component of the 
displacement vector, while the s1 component can be computed from the first equation 
in (15.37): 

[ 
81 l [ 9o(t2)9~19o(tt) j 

- - (15.43) 
S2 - 9x2(t2)- 9x2(tt) • 

9x2X2 

15.3 Correlation Methods 

So far, we estimated motion using methods which are based on the continuity of the 
optical flux. From our considerations in section 15.2.1, however, we know that the 
continuity of the optical flux in the simple form presented in (15.3) is only valid in 
very restricted cases. It turned out that we can expect negligible deviations from the 
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continuity only with significant gray value changes, e.g., steep edges (see (15.11)). 
Consequently, critics of the optical fiux method argue that image regions should be 
picked out where we can expect to estimate the displacement successfully. 

Such an approach consists of two steps. First we pick out suitable features. These 
features should be irrsensitive to changes in the illumination, i. e., such distortions of 
the continuity of the optical fiux as discussed in sections 14.1.1 and 15.2.1. In the 
second step, we search the corresponding points in the two images to determine the 
displacement. First, we discuss this second step, i. e., the general principle of the 
correlation approach and compare it with the optical fiow approach. Then we discuss 
two types of features which have recently been used for image sequence processing from 
different authors. 

15.3.1 Principle 

We assume that we have already found suitable features, i. e., that the gray value image 
has been converted into a feature image. To find a characteristic feature from the 
first image in the second, we take a small sector W from the first image g(t1 ) and 
compare it with equal-sized sectors from the second image g( t 2) within a certain search 
range. In this range we search for the position of the optimum similarity between the 
two sectors. When do we regard two features as being similar? The similarity measure 
should be robust agairrst changes in the illumination. Thus we regard two spatial feature 
patterns as equal if they differ only by a constant factor o: which refiects the difference 
in illumination. In the language of inner product vector spaces (see section 3.3.1 and 
appendix A.1), this means that the two feature vectors g(t1 ) and g(t2 ) are parallel. This 
can be the case if and only if an equality occurs in Cauchy-Schwarz inequality 

( ) 
1/2 

jd2x g(:c,tt)g(:c + s,t2 ) ~ jd2x g2(:c,tt) jd2x g2 (:c + s,t2 ) 

w w w 
(15.44) 

In other words, we need to maximize the cross-correlation coefficient 

jd2xg(z,tt)g(:c + s,t2) 
r(s) = ___ w.:..:...._ _________ --=-1-=/2. 

( jd2x l(:c, t1) jd2x l(z + s, t 2)) 

(15.45) 

The cross-correlation coefficient is a useful similarity measure. It is zero for totally 
dissimilar (orthogonal) patterns, and reaches a maximum of one for similar features. 

In contrast to the differential methods which are based on the continuity of the 
optical fiux, the correlation approach allows for intensity changes between the two im
ages in the sense that within the window chosen the illumination might be different 
globally. Hence, we can simply also take the cross-correlation technique for gray value 
images and do not need to extract special illumination irrsensitive features. This makes 
correlation-based techniques very useful for stereo-irnage processing where slight inten
sity variations always occur between the left and right image because of the two different 
cameras used. 
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15.3.2 Fast lmplementation 

Correlation-based techniques imply large computational costs. For discrete images, 
(15.44) reads 

( 2;:: 9m+p,n+q(tt)gm+p+k,n+q+l(t2)) 
2 

2 p,qEwmdow r mn;kl = _______ ::...;.:. _____________ ___:_ ______ _ 

E 9m+p,n+q(ti)9m+p,n+q(ti) E 9m+p+k,n+q+t(t2)9m+p+k,n+q+t(t2) 
p,qEwindow p,qEwindow 

(15.46) 
The indices m and n indicate the position of the window in the image, while k and l 
run over the search range for the maximum cross-correlation coefficient at the position 
(m,n). Thus the nurober of arithmetic operations goes with the mask size PQ and the 
search range K L. If we assume a mask size of 15 X 15 and a search range of 15 x 15, 
154 = 50625 operations are necessary to find a single feature in the image. 

Consequently, a fast implementation of the cross-correlation technique is necessary. 
In this section we show a two-step approach. First, we discuss a method for a direct 
determination of the maximum of the cross-correlation coefficient. Second, we discuss 
how the search can be speeded up by a coarse-to-fine strategy on a pyramid. 

Direct Maximum Search 
A fast determination of the maximum of the cross-correlation coefficient is based on 
the fact that we do not actually need to know the whole correlation coefficient within 
the search range but only enough information to find the maximum. If we assume that 
we are sufficiently close to the maximum, we can approximate the cross-correlation 
coefficient by a parabola. Let· us first consider a one-dimensional example: 

r(s) ~::r0 - r;(s-s?. (15.47) 

The maximum r0 occurs at s. We can determine s by determining the first- and second
order spatial derivatives without a shift s = 0 

(15.48) 

Then s is estimated by 

(15.49) 

In two dimensions, we can take a similar approach. We expand the cross-correlation 
coefficient in a second-order Taylor expansion 

From this expansion, we can compute the first-order derivatives at s = 0 
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(15.51) 

If we assume that the second-order derivatives do not change from zero shift to s, 
i. e., the second-order polynomial expansion is correct in this range, we can replace the 
second-order derivatives at s = s by those at 0 and obtain the following linear equation 
system for s 

(15.52) 

In this equation, we use the abbreviations for derivatives introduced in section 15.2.2. 
The linear equation system for the correlation approach has a similar form as (15.40) 
which has been derived by fitting the gray value surface by a second-order polynomial. 
The gray value function g is replaced by the cross-correlation coefficient r. Furthermore, 
no temporal derivatives occur. 

In discrete images, the partial derivatives are computed from discrete derivative 
operators. If we use the simple masks Dx = 1/2 [1 0 - 1] and n; = [1 -2 1], we 
obtain, for example, in the one-dimensional case (15.48) 

_ (rm·l- rm·-d/2 
S ~ ' ' m~ • 

2rm;O- Tm;l- Tm;-1 
(15.53) 

The second index indicates the shift between the two images for which the cross
correlation coefficient is computed. 

Coarse-to-Fine Strategy 
The maximum can only be found with the fast techniques discussed above if the dis
placements are small enough so that approximation of the cross-correlation function by 
a polynomial of second order around the maximum is still valid. This requirement is 
not met in most cases. 

This problern can be overcome using a coarse-to-fine strategy on a pyramidal image. 
On a Gauss or Laplace pyramid, the size of the images shrinks by a factor of two 
from level to level. Correspondingly, the pixel distances grow by the same factor. On 
the coarsest level of a 6-level pyramid, the pixel distance is 32 times larger than in the 
original image. Consequently, we can handle 32 times larger displacements at this level. 
The cross-correlation is computed using the following operations: 

1. Pointwise multiplication and smoothing 

Rl,l;O,O 

R2,2;o,o 

R1,2;k,l 

r2 1,2;k,l 

B [G(ti) · G(t1)] 
B [G(t2) · G(t2)] 
B [G(t1 ) · k1SG(t2)j 

R2 1,2;k,l 
R1,Ik1SR2,2. 

(15.54) 

As a result, we obtain a number of images r 12;kl which contain the cross-correlation 
coefficient between the two images determined for each pixel in the image. The indices 
k and 1 denote the shift in a horizontal and vertical direction, respectively. In order to 
compute the first and second derivatives, we need to compute nine cross-correlation 
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coefficients within an 8-neighborhood. The smoothing with the binomial operator ß 
determines the size of the features used for correlation. In contrast to (15.45), this 
kind of summation does not result in a box-shaped window, but in a gradual decrease 
of the influence towards the edge of the mask. In our discussion on smoothing filters 
in section 6.1 we learnt that this approach is much more advantageous. 

2. Computation of Derivatives 
In a second step, we compute the various first- and second-order derivatives of the 
cross-correlation coefficient, i. e., 

'Dx: 
'Dy: 
-n2 . vx. 
-n2 . 
L/y· 

'Dxy: 

3. Estimate of Displacement 

(r1,2;1,o- r1,2;-I,o)/2 

(ri,2;0,l - r1,2;0,-I)/2 

r1,2;1,o - 2r1,2;o,o + r1,2;-1,o 

r1,2;0,1 - 2r1,2;o,o + r1,2;0,-1 

r1,2;1,-1 + r1,2;-1,1 - r1,2;1,1 - r1,2;-1,-1· 

(15.55) 

With the derivations above, we have obtained all coefficients of the matrix and vector 
in (15.51) to determine the displacement vector s{Pl on the level P of the pyramid. 
We will obtain useful estimates at the pixels in which the matrix can be inverted. 

Although this estimate of s(P) is only a rough one, it is sufficiently accurate to be used 
as a starting displacement on the next finer level. Here the pointwise multiplication 
and smoothing takes into account the first estimate obtained on the level P, i. e., we 
perform the same operations as in (15.53) but first shift the second image by doubling 
the estimated displacement 

(15.56) 

where s-2s(P) derrotes the Operator which shifts the image by the distance -2s. Since 
the displacement is estimated with subpixel accuracy, this step involves interpolation 
of the gray values of the second image. In this way, we can proceed through the whole 
image until we reach the originallevel. 

So far, wehavestill used gray value images to compute the displacements and tried 
to compute the displacement at every pixel. In the following two sections we discuss 
two methods which first select suitable simple features and then perform the correlation 
analysis but only at the points with useful features. In this way, the computational 
burden can be decreased significantly. 

15.3.3 Monotony Operator 

Kories and Zimmermann [1986] suggested using the monotony operator to select fea
tures for motion and stereo image analysis which are nearly independent of the illumi
nation, but classify the spatial gray value structure simply. The monotony operator is 
computed in the following way: first we set all the pixels of the mask of the operator 
to one if their gray value is equal or less than that of the central pixel. Otherwise, the 
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pixels are set to zero. The monotony operator then counts the ones: 

f( k, l) 

M(m,n) 

{ 1 g(m,n)>g(m+k,n+l) V(k,l)Emask 
0 eise 

L:E(k, l). 
kl 

(15.57) 

With a 3 x 3 mask, the monotony operator maps the local gray value structure onto 
integers between 0 and 8. The figures represent characteristic gray value structures as 
shown by the following examples: 

Point: 

Line: 

Edge: 

Corner: 

0 0 0 0 0 
0 0 0 0 0 
0 0 20 0 0 
0 0 0 0 0 
0 0 0 0 0 

0 0 10 0 0 
0 0 10 0 0 
0 0 10 0 0 
0 0 10 0 0 
0 0 10 0 0 

0 0 10 10 10 
0 0 10 10 10 
0 0 10 10 10 
0 0 10 10 10 
0 0 10 10 10 

0 0 
0 0 
0 0 
0 0 
0 0 

0 0 0 
0 0 0 
10 10 10 
10 10 10 
10 10 10 

0 0 0 0 0 
0 0 0 0 0 

M 
~ 0 0 8 0 0 ' 

M 
~ 

M 
~ 

0 0 0 0 0 
0 0 0 0 0 

0 0 6 0 0 
0 0 6 0 0 
0 0 6 0 0 
0 0 6 0 0 
0 0 6 0 0 

0 0 3 0 0 
0 0 3 0 0 
0 0 3 0 0 
0 0 3 0 0 
0 0 3 0 0 

0 0 0 0 0 
0 0 0 0 0 
0 0 5 3 3 
0 0 3 0 0 
0 0 3 0 0 

From these examples we see that the monotony operator maps local maxima, lines, 
corners and edges onto the figures 8, 6, 5, and 3, respectively. 
The monotony operator shows several advantages: 
• The computational costs are low. Only comparison operations need to be computed. 
• The results do not depend on the absolute gray values and the contrast. The result 

of the operator does not change if the gray values are transformed by an operation 
which preserves the monotony of the gray values. 

• The monotony operator results in a classification which essentially reproduces the 
topology of the gray value structure. However, this mapping is ambiguous, since 
permutations of the pixels within the mask - except for the center pixel - do not 
change the result. Another drawback is that the monotony operator in the form given 
by (15.56) does not distinguish between local minima, areas with constant gray values, 
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~-

Figure 15.5: Two examples of displacement vector fields determined with the monotony operator: 
from Kories and Zimmermann [1986) . On the left one image of the sequence is shown, on the right 
the corresponding displacement vectors. Top: scene with an industrial robot, taken from above with 
a camera at rest. Bottom: detection of a moving car tracked with the camera. 

and gray value valleys. All three gray value structures vanish under the monotony 
operation. Thus the simple form of the monotony operator (15.56) discards velocity 
relevant gray value features. 

• A classification of features, as provided by the monotony operator, facilitates the 
correspondence algorithm considerably, since only features of the same dass must be 
searched. 
Figure 15.5 shows two examples of displacement vectors computed by Kories and 

Zimmermann [1986]. In the robot scene (top image), the moving arm in the lower left 
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of the image and the person moving close to the right edge of the image are clearly 
detected. In the parking lot scene (lower image), a camera tracked a moving car. Thus 
this car appears as an object at rest, while all other objects move to the right with 
the same speed. The image also shows that no displacement could be computed in the 
areas with constant gray values, especially in the lower left part of the image. 

15.3.4 Signum of the Laplace Operator 

In section 6.2.2, the Laplace operator proved to be a useful edge detector. Edges are 
shown as zero crossings bordered by larger areas with positive and negative values. If 
we only take the signum of the Laplace-:filtered image, we have a binary image, which 
clearly shows the edges of the images (see :figure 6.14f). Thus the signum of the Laplace 
operator seems to be a useful binary feature for displacement determination. 

A correlation method using a binary feature shows the significant advantage of 
computational efficiency. Multiplication is replaced by a logical operation. If we map a 
negative sign to 0 and a positive sign to 1, the multiplication corresponds to the logical 
equivalence operation as can be seen from the truth table 

Multiplication Equivalence 
A B AB A B At--tB 
+1 +1 +1 1 1 1 
-1 +1 -1 0 1 0 
+1 -1 -1 1 0 0 
-1 -1 +1 0 0 1 

Cross-correlation is given by 

R(p, q) = L B(m + k, n + l, t) t--t B(m + k + p, n + l + q, t + 1). 
(k,I)Emask 

(15.58) 

(15.59) 

The equivalence operation between two Boolean variables A and B can be performed 
by 

At--tB= (A 1\ B) V (A 1\ B) = A xor B. (15.60) 

1\ and V denote the logical and and or operation, respectively, the bar denotes logical 
negation. A correlation of binary signals does not show a parabolic form around the 
maximum as with continuous signals, but rather a sharp peak with linearly decreas
ing values. Dengier [1985) showed that the normalized cross-correlation signal can be 
approximated by 

(15.61) 

Then we can approximate the function (1- R) 2 by a second-order polynomial and apply 
the same method for the direct search of the maximum as discussed in section 15.3.2. 
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16.1 Introduction 

So far we have discussed the problern how displacement vectors (DV) can be deter
mined at single points in the image. Now we turn to the question how a continuous 
displacement vector field (DVF) can be estimated. The idea is to collect the sparse 
velocity information obtained with the local operations discussed in the last chapter 
and to compose it into a consistent picture of the motion in the scene observed. 

Let us first look at the methods to determine single displacement vectors from this 
point of view. We then realize that the correlation method yields displacement vectors 
only at points with certain features. We know nothing about motion at the points in 
between nor which points belong to the same object, i. e., which show a continuous 
DVF. The situation is not much better using the differential method (optical flow). 
Now we attempt to determine a displacement vector at each point, though we know 
that this will be successful only if certain conditions are met. However, we have made 
some progress since we know the certainty of each displacement vector. 

In this chapter we turn to the question of how a continuous displacement vector field 
can be obtained. In section 2.3 we have already discussed how much we can conclude 
from this about the motion in 2-D or 3-D space. 

The whole area of motion determination and analysis is one of the actual research 
topics in image processing. Considerable progress has recently been achieved. A transi
tion is taking place from using empirical approaches to approaches being based on the 
fundamental physicallaws of motion and optics. Consequently, from the many confus
ing approaches basic concepts are gradually emerging. This is the topic of this chapter. 
Results from some recent publications will also be presented and compared with each 
other in order to extract the different principles. 

Determination of the DVF from a single DV is not a simple interpolation problem, 
as we might think at first glance. 

• Generally, at a single point only one component of the DV can be determined, since 
edges are much more common than corners or local extrema. 

• Generally, a scene contains more than one moving object. The velocity field is then 
discontinuous at the edges of these objects. Since large gray value differences com
monly occur at object edges, we often obtain a good estimate of the DVs but un
fortunately cannot assume that the DVF extends continuously to both sides of the 
edges. 
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The many possibilities to determine a DVF will be considered from a unified point 
of view. Two opposing requirements have to be balanced in an optimal way: Firstly, 
the DVF should conform as closely as possible to the DV at that points, where they 
can be determined with suflicient certainty. Secondly, conditions shall be met resulting 
from the kinematics and dynamics of the motion. 

The mathematical tool with which such problems can be handled is variational 
calculus. Before we formulate the problem, the basic elements of variational calculus 
are compiled. 

16.2 Determination of DVF by Variational Calcu
lus 

16.2.1 General Approach 

Variational calculus is a powerful tool which has found widespread application through
out all the natural sciences. It is especially well known in physics. All basic concepts of 
theoretical physics can be formulated as extremum principles. Probably the best known 
is Hamilton's principle which leads to the Lagrange equation in theoretical mechanics 
[Goldstein, 1980]. 

Hamilton's principle says that a motion follows a path for which the integral over 
the Lagrange function L is an extremum. For the simple system of one mass point this 
means: 

t2 

jdt L(x, x, t) ---+ extremum. (16.1) 
tl 

The Lagrange function is given as the difference between the kinetic energy T of the 
mass point and the potential energy V, 

L(x,x, t) = T- V= ~mu2 - V(x). (16.2) 

In this case the path x(t) of the mass point is varied in order to gain an extremum 
for the integral in (16.1). The above integral equation is solved by the Euler-Lagrange 
differential equation 

(16.3) 

Now we ask how we can formulate the determination of the DVF as a variation 
problem. The path of the mass point x(t), a scalar function, has to be replaced by 
the displacement vector field u(:c), i.e., by a two-dimensional vector function of a two
dimensional vector variable. Consequently, the Lagrange function now depends on the 
vector variable :c. Furthermore, it will not only be a function of the DVF u(:c) and :c 
explicitly. There will be additional terms depending on the spatial partial derivatives 
of the DVF. They are required as soon as we demand that the DVF at a point should 
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be dependent on the DVF in the neighborhood. In conclusion, the general formulation 
of the variation integral for the DVF reads as 

j d2x L ( u, ~~i, :r:) ~ minimum. 
sector 3 

(16.4) 

The area integral is calculated over a certain sector of the image. Equation (16.4) 
already contains the knowledge that the extremum is a minimum. This results from 
the fact that the DVF should show a minimum deviation from the given DV at certain 
points with additional constraints. The corresponding Euler-Lagrange equations are 
(u = (ut,u2 ) = (u,v) and :r: = (x1 ,x2 ) = (x,y)): 

ßL ß ßL ß ßL 
0 ------- = 

ßu ßxßux ßyßuy 
(16.5) ßL ß ßL ß ßL 

------- 0. 
ßv ßxßvx ßyßvy 

16.2.2 Differential Method as a Minimal Problem 

In order to become familiar with variation calculus, we first try to formulate the differ
ential method to obtain DVs (section 15.2.1) as a continuous minimal problem. There 
we found 

L [\7 g(j)u + 9t(j)] 2 ~ minimum. (16.6) 
jEwindow 

This is a discrete formulation of a minimal problem. We pick out certain points in a 
small sector of the image and demand that continuity of optical flow should be preserved 
in the sense of a minimum quadratic deviation (L2-norm II · 11 2 ). Implicitly, we make 
use of the constraint that the displacement is constant in the sector considered. 

This minimal problern can similarly be written in a continuous space. Then the sum 
changes to an integral and we obtain 

J d2x ( \7g u + ~~r ~ minimum. 
sector 

(16. 7) 

In this case, we have a very simple Lagrange function depending only on the DVF u 
itself 

L(u) = ( \7g u + ßgß~:r:)r (16.8) 

Inserting this Lagrange function into the Euler-Lagrange equation (16.5) yields 

(16.9) 
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or written a.s a vector equation 

(16.10) 

These equations tell us that the DVF cannot be determined when the spatial gradient 
of 'V g is a zero vector. Otherwise we yield no more constraints than the continuity 
of the optical flow. Thus we can only determine the component of the velocity in the 
direction of the gray value gradient. 

16.3 Smooth Displacement Vector Fields 

16.3.1 Smoothness Constraints 

Surprisingly, the continuous minimal problern only yields isolated local solutions with
out any constraints for the spatial variation of the DVF. This results from the fact 
that formulation of the problern does not include any terms connecting neighboring 
displacement vectors. The inclusion of such constraints will be dealt with in this chap
ter, bearing in mind the basic facts ab out the kinema.tics of motion as discussed in 
section 14.2. There we learnt that the velocity field within a single moving object is 
continuous. Furthermore, it only changes slowly. Therefore we have to introduce re
strictions forcing the spatial derivatives to be as small as possible. Such restrictions are 
called smoothness constraints. 

In section 15.2.2 we discussed the least squares solution of the aperture problem. 
This approach implicitly contained a strong smoothness constraint. We assumed that 
the DVF is constant in a local neighborhood. Obviously, such a constraint is too strong 
and not flexible enough. Therefore we look for a suitable term to be added to the 
Lagrange function taking the smoothness constraint into account. 

Such a term requires spatial partial derivatives. Therefore we can try the following 
most simple term containing only first-order derivatives: 

L = (v og) 2 
2 [(8u1) 2 (8u1 )

2 (8u 2 )
2 (8u2 )

2
] g u + ot +a [) + [) + [) + [) . 

x1 X2 X1 x2 
(16.11) 

similarity term smoothness term 

In this additional term the partial derivatives come up as a sum of squares. This 
means that we evaluate the smoothness term with the same norm (12-norm, sum of 
least squares) as the first term. Moreover, in this formulation allpartial derivatives are 
weighted equally. We call the first term containing the optical flow a similarity term 
because this term tends to minimize the difference between the continuous DVF and 
the individual DV as far as they can by calculated from the optical flow. The factor a 2 

indicates the relative weight of the smoothness term compared to the similarity term. 
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Inserting the Lagrange function (16.11) into the Euler-Lagrange differential equation 
(16.5) yields the following differential equation: 

( a9 ) a9 \lgu+- -ot oxl 
(16.12) 

or summarized in a vector equation: 

(\lg u+ ~!) \lg- ~ =0. 
--..-- smoothness term 

(16.13) 

similarity term 

It is easy to grasp how the DVF results from this formula. First, imagine that the 
intensity is changing strongly in a certain direction. The similarity term then becomes 
dominant over the smoothness term and the velocity will be calculated according to 
the local optical flow. In contra.st, if the intensity change is small, the smoothness term 
becomes dominant. The local velocity will be calculated in such a manner that it is 
as close as possible to the velocity in the neighborhood. In other words, the DVF is 
interpolated from surrounding DVs. 

This process may be illustrated further by an extreme example. Let us consider 
an object with a constant intensity moving against a black background. Then the 
similarity term vanishes completely inside the object, while at the border the velocity 
perpendicular to the border can be calculated just from this term. This is an old and 
well known problern in physics: the problern of how to calculate the potential function 
(without sinks and sources) with given boundary conditions at the edge of the object 

flu = 0 Laplace equation. 

The smoothness term discussed so far was introduced by Horn and Schunk [1981]. 
Clearly, this is only one of many possibilities to set up such a term. Therefore we have 
to examine it taking into account what we know about the kinematics of motion. These 
considerations are not trivial, since even the constant motion of rigid objects does not 
necessarily result in a constant velocity field in the image plane. 

We will use moving planar surface elements as discussed in section 14.2 to examine 
this question in more deta.il. Foreach of the basic forms of motion, we calculate .D.u: 
• Translation parallel to the image plane: This is the only mode of motion resulting in 

a constant DVF 
u = u 0 '"'-+ .D.u = 0 

• Translation perpendicular to the image plane: The DVF has a constant divergence 
( surface dilation) 

u = cz '"'-+ flu = 0 

• Rotation around an axis perpendicular to the image plane 
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• Rotation around an axis in the image plane (here: x 2 axis) 

[ ~~ J = [ (tan~:~2ri:nn2 J ~ ßu = [ ~2 J 

• Shear 

[ ~~ ] - [ cx~x2 ] ~ ßu- 0 

This is a remarkable result: all basic types of motions of planar surface elements except 
for rotation around an axis parallel to the imageplane result in a vanishing ßu. This 
effect is caused by the fact that the DVF is linear in space coordinates in every case. 
Second-order derivatives only appear if the orientation of the planar surface elements 
changes or if curved surface elements are considered. A rotation around an axis parallel 
to the image plane is the only type of motion which changes the orientation of surface 
elements. This simple consideration shows that the smoothness term was well chosen: 
as all modes of motion are treated equally, the moving planar surfaces not only minimize 
the smoothness term optimally, they zero it. 

16.3.2 Elasticity Models 

The previous considerations will now be illustrated by a physical model. This approach 
was firstly reported by Broit [1981], who applied it in computer tomography. Laterit has 
been used and extended by Dengier [1985] for image sequence processing. Nowadays, 
it is a widely used tool in quite different topics in image processing [Kass et al., 1987; 
Terzopoulos et al., 1987]. 

Nonuniformmotion causes a slight distortion from one image to the next in a se
quence. The same distortions can occur if the image is regarded as an elastic membrane 
which is slightly deformed from image to image. At any point where a DV can be calcu
lated, an external force tries to pull the membrane towards the corresponding DV. The 
inner elastic forces distribute these deformations continuously over the image sector. 

Let us first consider the external forces in more detail. It does not make much 
sense to set the deformations at those points where we know the DV to the estimated 
displacement tobe without any fiexibility. Rather we allow deviations from the expected 
displacements which may be larger the more uncertain the determination. Physically 
this is similar to a small spring whose spring constant is proportional to the certainty 
with which the displacement can be calculated. 

The external spring forces are balanced by the inner elastic forces trying to even 
out the different deformations. Now let us look again at the Euler-Lagrange equation 
of the DVF (16.13) from this point of view. We can now understand this equation in 
the following way: 

(vg u+ ~~) Vg- ~ = o, 
internal force 

(16.14) 

external force 
where a 2 is an elasticity constant. In the expression for the internal forces only second 
derivatives appear, because a constant gradient of the DVF does not result in net inner 
forces. 
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The elasticity features of the membrane are expressed in a single constant. A deeper 
insight into the inner structure of the membrane is given by the Lagrange function 
(16.11) 

L = a2 [(8u1 )
2 + (8u1 )

2 + (8u2 )
2 + (8u2 )

2
] + (vg u + 8g) 2 

8x1 8x2 8x1 8x2 8t 
(16.15) 

T = deformation energy -V = potential 

The Lagrange function is composed of the potential of the external force as it results 
from the continuity of the optical flow and an energy term related to the inner forces. 
This term is thus called deformation energy. This energy appears in place of the kinetic 
energy in the classical example of the Lagrange function for a mass point, since the 
minimum is not sought in time but in space. 

The deformation energy may be split up into several terms which are closely related 
to the different modes of deformation: 

T=~ 
2 

f- (>. + tL)V(Vu) -tL!:l.u = 0. (16.17) 

The elasticity of a physical membrane is described by the two constants >. and IL· 
>. = -tL is not possible; as a result, the additional term (in comparison to the model 
membrane for the DVF) never vanishes. If there is no cross contraction, only >. can be 
zero. 

With the membrane model, only the elongation is continuous, but not the first
order derivative. Discontinuities occur exactly at the points where external forces are 
applied to the membrane. We can see this result directly from (16.13). A locally applied 
external force corresponds to a /j function in the similarity term. Integrating (16.13) 
we obtain a discontinuity in the first-order derivatives. 

These considerations question the smoothness constraints considered so far. We 
know that the motion of planar surface elements does not result in such discontinuities. 
A smoothness of the first-order derivatives can be forced if we include second-order 
derivatives in the smoothness (16.13) or the deformation energy (16.11) term. Phys
ically, such a model is similar to a thin elastic plate which cannot be folded like a 
membrane. 
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Figure 16.1: Simple one-dimensional network for a one-dimensional smooth DVF; after Harris [1987). 

16.3.3 Network Models 

Elasticity models are only one possibility to illustrate the computation of displacement 
vector fields. In this section we discuss another which emerged from electrical engi
neering, the network model. Compared to the elasticity models, the network model has 
the advantage of being a discrete model which directly corresponds to discrete imagery. 
We can, however, also formulate discrete elasticity models by replacing the continuous 
elastic material by a network of springs. This section follows the work of Harris [1986; 
1987]. The study of network models has become popular since network structures can 
be implemented directly on such massive parallel computer systems as the Connection 
Machine of Massachusetts Institute of Technology (MIT) [Harris, 1987]. 

One-dimensional Networks 
First, we consider the simple one-dimensional case. The displacement is similar to 
an electric tension. Continuity is forced by interconnecting neighboring pixels with 
electrical resistors. In this way, we build up a linear resistor chain as shown in figure 16.1. 
We can force the displacement at a pixel to a certain value by applying a potential at 
the corresponding pixel. If only one voltage source exists in the resistor chain, the 
whole network is put to the same constant voltage. If another potential is applied to 
a second node of the network and all interconnecting resistors are equal, we obtain a 
linear voltage change between the two points. In summary, the network of resistors 
forces continuity in the voltage, while application of a voltage at a certain node forces 
similarity. 

There are different types of boundary conditions. On the one hand, we can apply 
a certain voltage to the edge of the resistor chain and thus force a certain value of the 
displacement vector at the edge of the image. On the other hand, we can make no 
connection. This is equivalent to setting the first-order spatial derivative to zero at the 
edge. The voltage at the edge is then equal to the voltage at the next connection to a 
voltage source. 

In the elasticity models we did not set the displacements to the value resulting 
from the similarity constraint directly, but allowed for so~e flexibility by applying the 
displacement via a spring. In a similar manner we do not apply the voltage to the node 
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Figure 16.2: Discrete network model for a one-dimensional displacement vector field with smooth 
first-order derivatives; after Harris [1987]. 

I, U0;, directly but via the resistor S; (figure 16.1 ). We set the resistance proportional 
to the uncertainty of the displacement vector. 

The difference equation for the network model is given by the rule that the sum of 
all currents must cancel each other at every node of the network. Using the definitions 
given in figure 16.1, we obtain 

U, - U.o· U. - U·-1 U.· - U.·+I 
• S; • + • R • + • R • = O. (16.18) 

The two fractions on the right side constitute the second-order discrete differentiation 
Operator v; (see section 6.2.2). Thus (16.18) results in 

R 82U 
(U- Uo)s - ßx2 = o. (16.19) 

This equation is the one-dimensional discrete form of (16.13). Fora better comparison, 
we rewrite this equation in a slightly modified version: 

2 

( u + 9t) Yx _ D.u = O. 
9x a2 

(16.20) 

Now we can quantify the analogy between the displacement vectors and the network 
model. The resistor ratio R/ S is proportional to the square of the spatial derivative. 
Both quantities express an error estimate for the displacement U0 determined from the 
continuity of the optical :fl.ux. 

Generalized Networks 
Now we turn to the question how to integrate the continuity of first-order derivatives 
into the network model. Harris [1986] used an active subtraction module which com
putes the difference of two signals. All three connections of the element are in- and 
outputs simultaneously. At two arbitrary inputs we apply a voltage and obtain the cor
responding output voltage at the third connection. Such a module requires active elec
tronic components [Harris, 1986]. Figure 16.2 shows the integration of this subtraction 
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Figure 16.3: Generalized network for a one-dimensional DVF, which keeps higher-order derivatives 
smooth; after Harris [1987]. 

Figure 16.4: Generalized one-dimensional network with a discontinuity in the DVF and its first spatial 
derivative as indicated. 

module into the network. It computes the difference voltage between two neighboring 
nodes. These differences - and not the voltages themselves - are put into the resistor 
network. In this way we obtain a network which keeps the first derivative continuous. 
We can generalize this approach to obtain networks which keep higher-orderderivatives 
continuous by adding severallayers with subtraction modules (figure 16.3). 

Discontinuities 
Displacement vector fields show discontinuities at the edges of moving objects. Dis
continuities can easily be implemented into the network model. In the simple network 
with zero-order continuity (figure 16.1 ), we just remove the connecting resistor between 
two neighboring pixels to produce a voltage discontinuity at this point. We can also 
think of a nonlinear network model with voltage-dependent resistors. We might sus
pect discontinuities at steep gradients in the velocity field. If the resistance increases 
with the voltage, we have a mechanism to produce implied discontinuities. These few 
considerations prove how flexible and illustrative network models are. 

Integration of discontinuities is more complex in a generalized network. Here we 
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Figure 16.5: One-dimensional network with capacitors to simulate the convergency of iterative solu
tions. 

may place discontinuities at each level of the network, i. e., we may make either the 
DVF or any of its derivatives discontinuous by removing a resistor at the corresponding 
level. We need to remove all resistors of deeper lying nodes which are connected to 
the point of discontinuity (figure 16.4). Otherwise, the higher-order derivatives stay 
continuous and cause the lower-order derivatives to become continuous. 

Two-dimensional Networks 
The network model can also be used for higher-dimensional problems. For a two
dimensional network model with zero-order continuity, we build up a two-dimensional 
mesh of resistors. The setup of two-dimensional generalized network models with 
higher-order continuity constraints is more complex. In each level we must consider the 
continuity of several partial derivatives. There are two first-order spatial derivatives, a 
horizontal and a vertical one. For each of them, we need to build up a separate layer 
with subtraction modules as shown in figure 16.2, in order to achieve the smoothness 
constraint. Furtherdetails can be found in Harris [1987]. 

Multigrid Networks 
One of the most important practical issues is the rate of convergence of iterative methods 
to solve large equation systems in order to model them with networks. Thus the question 
arises whether it is also possible to integrate this important aspect into the network 
model. Iteration introduces a time-dependency into the system, which can be modelled 
by adding capacitors into the network (figure 16.5). The capacitors do not change at 
all the static properties of the network. 

When we start the iteration, we know the displacement vectors only at some isolated 
points. Therefore we want to know how many iterations it takes to carry this informa
tion to distaut points where we do not have any displacement information. In order to 
answer this question, we derive the difference equation for the resistor-capacitor chain 
as shown in figure 16.5. It is given by the rule that the sumofall currents fiowing into 
one node must cancel each other. In addition, we need to know that the current fiowing 
into a capacitor is proportional to its capacity C and the temporal derivative of the 
voltage 8U / ßt: 

U;-t - U; U;+l - U; - CßU; = 0 (16.21) 
R + R ßt 

or 
8U; = ( A )2{)2U; 

r ßt ux ßx2 . (16.22) 
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In the second equation, we introduced ßx as the spatial distance between neighboring 
nodes in order to formulate a spatial derivative, and T = RC, the time constant of an 
individual resistor-capacitor circuit. Equation (16.22) is the discrete one-dimensional 
formulation of one of the most important equations in natural sciences, the transport or 
diffusion equation, better known in its multidimensional continuous form [Jost, 1960] 

oc ot = Dßc, (16.23) 

where D is the diffusion coefficient and c the concentration of the substance transported. 
Without explicitly solving (16.22), we can answer the question as to the time constant 
needed to smooth the displacement vector field over a certain space scale. Let us 
assume a periodically varying displacement vector field with a wavelength A. This 
periodic structure will decay exponentially with a time constant T>. which depends on 
the wavelength A. 

U; = U0;exp(-t/T)exp(ikx). (16.24) 

Introducing this formula into (16.22), we obtain 

T T 2 
T>. = (ßx k)2 = 47r2(ßx)2A · (16.25) 

With this result, we can answer the question as to convergence time of the iteration. The 
convergence time goes with the square of the wavelength of the structure. Consequently, 
it takes four times Ionger to get gray values at double the distance into equilibrium. Let 
us arbitrarily assume that we need one iteration step to bring neighboring nodes into 
equilibrium. We then need 100 iteration steps to equilibrate nodes which are 10 pixels 
distant. If only isolated displacement vectors are known, this approach is by far too 
slow to gain a continuous displacement vector field. 

Multigrid data structures, which we discussed in chapter 8, are an eflicient tool to 
aceeierate the convergence of the iteration. At the coarser Ievels of the pyramid, distant 
points come much closer together. In a pyramid with only six Ievels, the distances shrink 
by a factor of 32. Thus we can compute the large-scale structures of the DVF with a 
convergence rate which is about 1000 times faster than on the original image. We do 
not obtain any small-scale variations of the DVF, but can use the coarse structure of 
the displacement vector field as the starting point for the iteration at the next Ievel. 

In this way, we can refine the DVF from level to level and end up with a full
resolution DVF at the lowest level of the pyramid. The computations at all the higher 
levels of the pyramid do not add a significant overhead, since the nurober of pixels at 
alllevels of the pyramid is only one third more than at the lowest level. 

16.3.4 Diffusion Models 

In our discussion of the network model, we already indicated that the network model 
including capacitors leads to the general transport or diffusion equation. 

Thus we can compare the computation of smooth displacement vector fields with a 
diffusion process. A component of the displacement vector corresponds to the concen
tration of diffusing species. Each pixel corresponds to a small cell which is in diffusive 
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Figure 16.6: The diffusion model to determine smooth displacement vector fields. 

contact with the neighboring cells. The flux density between neighboring cells is pro
portional to the concentration difference and the diffusion coefficient D according to 
Fick's first law [Jost, 1960] 

j = -D~:- (16.26) 

The similarity constraint inferred from the continuity of the optical flux corresponds to 
a connection to another cell with a constant concentration Co and a diffusion coefficient 
D'. In steady state, the fluxes into one cell must cancel each other and we obtain 

D' 82c 
(c- Co) D(ßx)2 - ßx2 = 0, (16.27) 

in a similar way as in (16.19). 
We have discussed the analogies to the determination of smooth displacement vector 

fields in detail to point out the similarities of the approaches in very different areas 
throughout the natural sciences. This kind of approach will make it much easier to 
grasp the complex problems discussed in this chapter. 

16.4 Controlling Smoothness 

After the discussion about the basic properties of smooth DVFs two important questions 
remain to be answered: 

1. How can the complex equations as in (16.13) be solved numerically? Because images 
are large matrices huge equation systems occur. This question is by no means trivial, 
as already discussed in section 13.3.4 when dealing with algebraic reconstruction 
methods. 

2. How can we adequately treat discontinuities in the DVF as they occur at object 
boundaries? In other words, the method to determine DVFs must include a possibility 
to detect and allow for discontinuities in the DVF. 
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Let us first discuss the principal possibilities to vary the minimal problern within 
the chosen frame. To do that we rewrite the integral equation for the minimal problern 
(16.4) using the knowledge about the meaning of the Lagrange function obtained in the 
last section: 

J 
aector 

T(au;) 

~ 
- V(u) d2x-+ minimum. --...,......... 

potential 

(16.28) 

defonnation energy 

Summing up, we may describe the effect of both terms in the following way: 
• The potential function V(u) forces similarity between the two images. Deviations 

from locally calculated displacements result in an increased potential energy. The 
strength of the potential is proportional to the certainty of this determination. Where 
no displacement can be calculated the potential function is zero. 

• The deformation energy causes smoothness of the DVF, since steep changes in the 
DVF mean a large inner deformation energy. The DVF actually calculated is given 
in such a way that the sum of both terms over a certain image sector is a minimum. 
It is possible to vary three quantities with this approach: 

1. Integration area. The integration area is one of the ways that the problern of discon
tinuities in the DVF may be solved. If the integration area includes discontinuities 
wrong DVFs are obtained. So algorithms must be found which try to detect edges in 
the DVF and, as a consequence, restriet the integration area to the segmented areas. 
Obviously, this is a difficult iterative procedure. First, the edges in the image itself 
do not necessarily coincide with the edges in the DVF. Second, before calculating the 
DVF only sparse information is available. 

2. Smoothness. Modification of the smoothness term is another way to solve the dis
continuity problem. At points where a discontinuity is suspected the smoothness 
constraint may be weakened or even vanished. This allows discontinuities. Again 
this is an iterative algorithm. The smoothness term must include a control func
tion which switches off the smoothness constraint in appropriate conditions. This 
property is called controlled smoothness [Terzopoulos, 1986]. 

3. Similarity. Modifications of the similarity term or deformation energy include all 
the possibilities available to estimate local DV ( discussed in chapter 15). Here the 
basic question is: how can we safely progress from visual to physical correspondence? 
We remernher that both may not coincide because of changes in the illumination or 
because of occlusions. 

After this compilation of all the possibilities we are well prepared for the following 
discussion on recent approaches. We will discuss and compare them to see how the com
plicated and large equation systems can be solved. Since results of recent publications 
are included and as we are dealing with an area of active research, no final judgement 
of the different approaches is given. The purpose of the rest of this chapter is to outline 
the state of the art and the unsolved problems. 

16.4.1 Smooth Displacement Vector Fields 

Global smoothness as shown in (16.13) was first introduced by Horn and Schunk (1981]. 
Here we now discuss how to solve this equation numerically. Horn and Schunk used the 
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Figure 16.7: Two consecutive images from the Harnburg taxi scene. This scene has been taken in 
the Computer Science Department at Harnburg University and since then has been used as a test 
sequence for image sequence processing. The copy shown here was kindly provided by J. Dengier and 
M. Schmidt, German Cancer Research Center, Heidelberg. 

following approximation for the Laplace operator: 

ßu ;:::::u-u. 

With u we denote a local mean of the DVF u. Thus the Laplacian is built by subtracting 
a mean value from. the unfiltered velocity field. We used the same approach in one 
formulation of the discrete Laplacian operator in section 6.2.2 (6.43) and in building 
the Laplacian pyramid (section 8.2.2). Using this approach, Horn and Schunk found a 
simple iterative solution based on a simple gradient method: 

(j+l) _ ----uJ _ n V' g U"<J) + 9t 
u - u v g IY'gl2 + a2 . (16.29) 

As long as the gray value gradient is small, the local value of the displacement vector 
is taken from the mean of the neighborhood. In this way, the displacement vector is 
spread into regions where we cannot determine a displacement vector. If the gray value 
is large, the displacement vector is corrected by the second term in (16.29), provided 
that the continuity equation is not yet met by uUl. 

Dengier [1985] proposed a modified solution. In his studies he worked with the well
known taxi sequence, in which a taxi turns to the right at a crossing. Two consecutive 
images of these sequence are shown in figure 16.7. Dengler's approach basically shows 
two modifications. 
• First, and most important, he uses a multigrid approach. As discussed in sec

tion 16.3.3, multigrid methods are an efficient way to aceeierate the convergence 
of iterative methods. 
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Figure 16.8: a) Three Ievels of the Laplace pyramid computed from the taxi scene (figure 16.7): a) 
pseudo-logarithmically filtered gray values; b) zero crossings at the same Ievels; kindly provided by M. 
Schmidt and J. Dengler, German Cancer Research Center, Heidelberg. 

• Second, he does not use the gray values in the similarity term directly. Since the 
image is decomposed into a Laplace pyramid anyway, the signum of the Laplace 
operator at each level seems tobe a proper choice for a simple binary feature. Using 
a binary feature in the similarity term, we can evaluate the displacement vectors with 
a fast correlation method as discussed in section 15.3.4. 
Later Schmidt (1988] improved the method even further. Although the signum of the 

Laplace operator turned out tobe a robust feature for the determination of displacement 
vectors, the accuracy of the estimated displacement vector is limited because a binary 
feature contains zero crossings only with an accuracy of ±1/2 pixels. 

A pseudo-logarithmic transformation of the gray values in the Laplace pyramid 

g'(x) = sign(g(x))ln(1 + lg(x)l) (16.30) 

turns out to be a good compromise. It is a more detailed feature but not as sensitive 
to illumination variations as the gray value. The pseudo-logarithmic transformation 
adapts well to the gray value histogram in Laplace pyramids. The histograms typically 
show a sharp peak around the gray value zero and long ridges for high positive and 
negative gray values. They are caused by the relatively seldom occurrence of edges. The 
pseudo-logarithmic transformation compresses the gray values with large magnitudes 
and thus leads to a more even distribution of the features. 

Three levels of the pseudo logarithmic filtered Laplace pyramid are shown in fig
ure 16.8a, the computed displacement vector field at the same levels is shown in fig
ures 16.9a-c. From the coarsest to the finest level, the moving car can be recognized 
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d) 

Figure 16.9: Determination ofthe DVF in the taxi scene (figure 16.7) using the method of the dynamic 
pyramid: a) through c) three Ievels ofthe DVF corresponding to the Ievels shown in figure 16.8a using a 
global smoothness constraint; d) final result of the DVF using a region-oriented smoothness constraint; 
the regions were determined from the zero crossings in figure 16.8b; kindly provided by M. Schmidt 
and J. Dengler, German Cancer Research Center, Heidelberg. 

from the DVF more and more precisely. However, we also discover some significant er
rors. Because of the global smoothness constraint, the displacement vector field shows 
no discontinuities at the edges of the car but rather a gradual decrease towards zero. 
Furthermore, the DVF extends considerably past the edges of the taxi, especially to 
the lower right. The shadow of the car is located in this part of the image. Since it 
moves with the car, it produces an apparent displacement. 

16.4.2 Edge-oriented Smoothness 

Like Dengler, Hildreth [1984] uses the Laplace filtered image, any further computations 
she makes being limited to the zero crossings. The approach is motivated by the fact 
that zero crossings mark the gray value edges (section 6.2), i. e., the features at which 
we can compute the velocity component normal to the edge. The big advantage of 
this approach is that the preselection of promising features considerably decreases any 
computation required. 

By selecting the zero-crossings, the smoothness constraint is limited to a certain 
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Figure 16.10: Computation of the DVF along zero crossings in a Laplace filtered image: a) original 
with a marked sector; b) zero crossings of the Laplace filtered image; c) true DVF (pure translation); 
d) locally computed velocity components normal to the zero-crossings; e) VVF, computed using a 
smoothness constraint along zero crossings; from Hildreth [1984]: 

edge. This seems useful, since a zero crossing most likely belongs to an object but does 
not cross the object boundaries. However, this is not necessarily the case (figure 16.8b). 
If a zero crossing is contained within an object, the velocity along the contour should 
show no discontinuities. By selecting a line instead of an area for the smoothness 
constraint, the integration region changes from an area to the line integral 

(16.31) 

n is a unit vector normal to the edge and U.L the velocity normal to the edge. The 
derivatives of the velocities are computed in the direction of the edge. The component 
normal to the edge is directly given by the similarity term, while the velocity term 
parallel to the edge must be inferred from the smoothness constraint all along the edge. 
The solution of the linear equation system resulting from (16.31) is computed iteratively 
using the method of the conjugate gradients. Figures 16.10c, d show that the method 
works well. The computed DVF along the zero crossings coincides weil with the true 
DVF. 
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16.4.3 Region-limited Smoothness 

The edge-oriented method shows several significant disadvantages. One has already 
been pointed out: it is not sure that a zero crossing is contained within an object 
(see figure 16.8b). Thus we cannot assume that the DVF is continuous along the zero 
crossing. Since only edges are used to compute the DVF, only one component of the 
displacement vector can be computed locally. In this way, all features either as gray 
value maxima or gray value corners which allow an unambiguous local determination 
of a displacement vector are disregarded. 

A region-oriented approach does not omit such points, but still tries to limit the 
smoothness within objects. Again zero-crossings are used to separate the image into 
regions. Region-limited smoothness just drops the continuity constraint at the bound
aries of the region. The simplest approach to this form of constraint is to limit the 
integration areas to the different regions and to evaluate them separately. 

As expected, a region-limited smoothness constraint results in a DVF with disconti
nuities at the region's boundaries (figure 16.9d) which is in clear contrast to the globally 
smooth DVF in figure 16.9c. We immediately recognize the taxi by the boundaries of 
the DVF. We also observe, however, that the car is segmented further into regions with 
different DVFs, as shown in the taxi plate on the roof of the car and the back and side 
windows. The small regions especially show a DVF which is significantly different from 
that in larger regions. Thus a simple region-limited smoothness constraint does not 
reflect the fact that there might be separated regions within objects. The DVF may 
well be smooth across these boundaries. 

16.4.4 Oriented Smoothness 

The approach of Nagel [1986] shows another way to allow for discontinuities in the 
DVF. Nagel's constraint is not as restrictive as that just discussed for region-limited 
smoothness. He modifies the smoothness constraint in such a way that at steep edges 
smoothness is only preserved along edges but not across edges. Again this approach is 
motivated by the fact that gray value edges may also be edges of moving objects. In 
contrast to the methods previously discussed, the continuity is not completely cut off 
at a certain threshold but depends on the steepness of the edges. This approach results 
in a complex smoothness term (the deformation energy T): 

T = 2 + a: + 2 { (g;1 + g;,) [(V'u1t9 ) 2 + (V'u2t9 ) 2] 
Yx1 Yx2 I 

+ 1 [(8u1 )
2 + (8u1 )

2 + (ou2 )
2 + ([)u2 )

2
]}. 

oxl ox2 oxl OX2 

(16.32) 

For a clear representation of this complex equation different notations for partial deriva
tives have been used. The vector t 9 is a unit vector parallel to the gray value gradient 
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Figure 16.11: DVF for the taxi scene (figure 16.7) as determined with the oriented smoothness con
straint by Enkelmann [1986]. 

Equation (16.32) basically contains two terms. The first contains the oriented smooth
ness constraint which only works along gray value edges, since the velocity gradients are 
projected onto this direction. The second term contains the well-known homogeneous 
smoothness constraint. 

As long as no significant gray value gradients exist (9;1 + 9;2 ~ 21), the oriented 
smoothness constraint plays no role. Thus (16.32) reduces the normal homogeneous 
smoothness constraint. At prominent gray value edges g';1 + 9;2 ~ 21, however, the 
oriented smoothness constraint becomes dominant. 

Enkelmann [1986] also applies a multigrid approach to compute the DVF using this 
smoothness constraint. The final result of the oriented smoothness method applied to 
the taxi scene is shown in figure 16.11. Despite the detailed smoothness constraint, the 
computed DVF does not seem to be superior to the results of the other methods (fig
ure 16.9c and d). The erroneous displacement vectors at the upper right edge of the car 
and the significant variations of the DVF within the taxi are surprising. Qualitatively, 
we have the impression that the DVF computed using the oriented smoothness con
straint lies between the results of the global and region-lirnited smoothness constraints, 
as we would expect. 

16.5 Summary 

The examples discussed in this section demonstrate that significant progress could be 
achieved in computing DVF, However, the current stage is still not satisfying. 
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• Unfortunately in nearly all the studies on motion analysis performed so far, image 
sequences have been used where the true DVF is not known. This is a serious draw
back. Only if the true DVF is known, is a quantitative analysis of the accuracy and 
an objective comparison of different methods possible. 

• A convincing solution to incorporate discontinuities into the DVF in an adequate 
manner still does not seem to exist. Without doubt this is a difficult question. Object 
edges at which we can determine the displacement vector accurately are simultane
ously discontinuities in the DVF. We can neither smooth over these discontinuities 
as a global smoothness constraint does, nor can we simply cut it off, as other con
straints do. We need an object-oriented approach which allows us to determine to 
which object these velocity vectors belong. Schmidt (1988] was the first to consider 
these facts. 

• Bearing in mind all the difficulties in determining displacement vector fields, we might 
ask the broad question whether it makes sense to compute a DVF and to extrapolate 
it into regions where we could not determine velocity information. It might be more 
appropriate, instead of computing a DFV at this early stage of motion analysis, to 
wait until we have more information to separate the scene into individual objects. 
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17.1 Motion is Grientation 

So far, we have analyzed motion from only two consecutive images of a sequence, 
but did not consider the whole sequence. This stemmed from a limited capacity to 
handle image sequence data. Nowadays, video and computer hardware can record, 
store, and evaluate long image sequences (see section 1.2.2 and appendix B). It is much 
more important, however, to recognize that there is no principal reason to limit image 
sequence processing to an image pair. On the contrary, it seems to be an unjustified 
restriction. That is certainly true for the concepts developed so far. In the differential 
approach (section 15.2) temporal derivatives play an essential role (see (15.5), (15.12), 
and (15.27)). With only two consecutive images of a sequence, we can approximate the 
temporal derivative just by the difference between the two images. This may be the 
simplest approximation, but not necessarily the best (see section 6.3.5). 

In this section, we consider image sequence analysis in a multi-dimensional space 
spanned by one to three space and one time coordinates. Consequently, we speak of 
space-time images or the zt space. Even a superficial analysis shows the significant 
advantages of this new approach: 
• Motion can also be analyzed in the Fourier domain. The Fourier space corresponding 

to the zt space is spanned by one to three wave number and one frequency coordi
nates, and is denoted as the kw space. 

• The concepts of two-dimensional image processing as local neighborhood operations 
(chapter 5) and local orientation (chapter 7) can also be used in space-time imagery. 

• We can analyze the temporal change of motion. This allows a much better modeHing 
of the displacement vector field. We can include more powerful constraints implied 
by the dynamics of motion (see section 14.3). 

• Using more than two images, we can expect a morerobust and accurate determination 
of motion. This is a crucial issue for scientific applications. 
In this introductory section, we show that motion can be regarded as orientation in 

the zt space. Let us consider a space-time image as shown in figure 17.1. We canthink 
of a three-dimensional space-time image as a stack of consecutive images put one on 
top of the other, a so-called image stack ( figure 17.1). An image sequence may also be 
represented as an image cube as shown in figure 1.8. At each visible face of the cube we 
map a cross section in the corresponding direction. Both representations cannot show 



17.1 Motion is Odentation 319 

b) 

x, 

Figure 17.1: Space-time images: a) representation as a stack ofimages; b) two-dimensional space-time 
image with one space and one time coordinate; c) three-dimensional space-time image. 

the whole sequence at once. In a space-time image a pixel extends to a voxel, i. e., it 
represents a gray value in a small volume element with the extensions ßx17 ßx2, and 
ßt. 

To analyze motion in space-time images, we first consider a simple example with 
one space and one time coordinate (figure 17.1b). A non-moving 1-D object shows 
vertically orientated gray value structures. If an object is moving, it is shifted from 
image to image and thus shows up as an inclined gray value structure. Generally, it is 
obvious that the velocity is directly linked to the orientation in space-time images. In 
the simple case of a 2-D space-time image, the velocity is given by 

u = -tancp, (17.1) 
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Figure 17.2: x1t-cross sections through an image sequence showing small-scale water surface propagat
ing on the water surface: a) 4m/s wind speed and 6.2 m fetch; b) 6 m/s wind speed and 21.3 m fetch; 
unpublished data taken by the author in the Marseille windfwave facilty. 

where cp is the angle between the x axis and the normal to the lines of constant gray 
values. The extension to two dimensions in space is Straightforward and illustrated in 
figure 17.1c: 

u =- [ !::~~] 0 (17.2) 

The angles cp1 and cp2 are defined analogously as the angle between the plane normal 
to the lines of constant gray values and the x1 and x2 axes. 

Figure 17.2 shows x1t-cross sections through an image sequence of the water surface 
waves (see section 1.4 and figure 1.8). We can immediately recognize the different forms 
of wave motion in the two images. In figure 17.2a, small- and large-scale waves move 
with the same speed. Motion is much more complex in figure 17.2b. A large-scale 
wave is rapidly moving through'the image with constant speed. The S-shaped lines of 
constant gray values of the smaller scale waves indicate that the propagation of these 
waves is modulated by the large scale wave. It is very encouraging that we can recognize 
such complex superimposing motions in the r~:t space. May be the transition of motion 
analysis from image pairs to whole sequences in the r~:t space is not just an improvement 
but a qualitatively new approach. 

In summary, we come to the important conclusion: Motion appears as orientation 
in space-time images. Consequently, we can extend the concepts of orientation analysis, 
developed in chapter 7, to the motion prob lern. 

This approach to motion analysis has much in common with the problern of re
construction of 3-D images from projections. Actually, we can think of a geometrical 
determination of the velocity by observing the transparent three-dimensional space
time image from different points of view. At the right observation angle, we look along 
the edges of the moving object and obtain the velocity from the angle between the 
observation direction and the time axis. If we observe only the edge of an object, we 
cannot find such an observation angle unambiguously. We can change the component 
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of the angle along the edge arbitrarily and still look along the edge. In this way, we 
discover the aperture problem, discussed in section 14.1.2, from a different point ofview. 

Starting from the basic fact that motion is equivalent to orienta:tion in the ~t space, 
we come to the final chapter of this book. First we will extend our understanding by 
analyzing motion in the kw space. Then we will revise the corresponding problern and 
discuss velocity filtering. Finally, we discuss several concepts of analyzing motion in 
the ~t space. 

17.2 Motion in Fourier Domain 

Introducing the ~t space, we gain the significant advantage that we can also analyze 
motion in the corresponding Fourier domain, the kw space. This simple fact opens up 
a new approach to image sequence analysis. First we consider the example of an image 
sequence in which all the objects are moving with constant velocity. Such a sequence 
g(~, t) can be described by 

g(~, t) = g(~- ut). (17.3) 

This equation is known as the general solution for the differential equation for dispersion
free propagation of waves. The Fourier transform of this sequence reads 

g(k,w) = (2~)3 jdt jd2x g(~- ut) exp[-i(k~- wt)]. 
t :r: 

(17 .4) 

Substituting 
~~ = ~- ut 

we obtain 

g(k,w) = (2~)3 jdt [ jd2 x' g(~')exp(-ik~')] exp(-ikut)exp(iwt). 
t :r:' 

The inner integral covers the spatial Coordinates and results in the spatial Fourier 
transform of the image g(~ ), g(k ). The outer integral over the time coordinate reduces 
to a 8 function 

g(k,w) = g(k)8(ku- w). (17 .5) 

This equation states that an object moving with the velocity u occupies only a subspace 
in the kw space. In the two- and three-dimensional ~t space, it is a line and a plane, 
respectively. The equation for the plane is directly given by the argument of the 8 
function in (17.5): 

(17.6) 

This plane intersects the k1k2 plane normal to the direction of the velocity since in 
this direction the inner product ku vanishes. The slope of the plane, a two-component 
vector, yields the velocity 
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The index k in the gradient operator denotes that the partial derivations are computed 
with respect to k. 

From these considerations, it is obvious - at least in principal - how we can 
determine the velocity in an image sequence showing a constant velocity. We compute 
the Fourier transform of the sequence and then determine the slope of the plane on which 
the spectrum of the sequence is located. We can do this best if the scene contains small
scale structures, i. e., high wave numbers which are distributed in many directions. We 
cannot determine the slope of the plane unambiguously if the spectrum lies on a line 
instead of a plane. This is the case when the spatial structure of the gray values is 
oriented locally. From the line in Fourier space we only obtain the component of the 
plane slope in the direction of the spatial local orientation. In this way, we encounter 
the aperture problern in the kw space. 

The introduction of the kw space also allows the central problern of image sequence 
analysis, the correspondence problem, to be tackled from a new point of view. The 
correspondence problem, as discussed in section 14.1.3, states that, under most circum
stances, we cannot unambiguously find corresponding features in consecutive images of 
a sequence. 

As an example, we reconsider a periodic gray value structure with the wavelength 
.\0 , moving with the velocity u0 • Physically speaking, such an object is a planar wave 

g(:~!, t) = 9o exp[-i(ko:l!- uokot)]. 

Let us imagine that we have taken images at temporal distances ßt. Because of the 
motion, the phase of the planar wave changes from image to image. The inter-irnage 
phase shift is given by 

(17 .7) 

Displacements and thus velocities cannot be determined unambiguously from phase 
shifts, since we cannot distinguish what multiples of a wavelength a wave actually 
moves. The inter-irnage displacement is only unambiguous if the magnitude of the 
displacement is smaller than half a wavelength. This means that the magnitude of the 
phase shift must be smaller than 11': 

ID..<PI < 11'. 

Tagether with (17. 7) we yield a condition for the temporal sampling of the image 
sequence 

11' 11' To 
ßt<-=-=-. 

uoko Wo 2 
(17.8) 

This condition sounds very familiar. It says that we must sample each temporal pat
tern at least two times per period T0 • This is nothing else but the temporal sampling 
theorem. The correspondence problern arose only because the image pair was an inade
quate discrete representation of the temporal properties of the image sequence. In this 
respect, we can consider the correspondence problern as a temporal aliasing problem. 
If the temporal sampling theorem is not met, we cannot unambiguously determine the 
frequency and thus the velocity. In other words, the cor~espondence problern can be 
entirely avoided if we take images in temporal distances which are short enough to 
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meet {17.8). Because of the importance of the correct temporal sampling, we state the 
sampling theorem for image sequences in a more formal way, similar to the sampling 
theorem in section 2.3.3: 

If the spectrum g( k) of a continuous image sequence g( :1!, t) is bandlimited, i. e., 
g(k,w) = 0 Vlk;l ~ Pk;/2 and w ~ Pw/2, then it can be reconstructed exactly from 
samples with a distance ßx; = 2n)P k; and ßt = 27r jPw. 

Let us consider in more detail what the sampling theorem means practically. We 
assume that an image sequence has been sampled according to the sampling theorem. 
Then the smallest wavelength is the distance of two pixels. Since the maximum shift 
from image to image may not exceed half a wavelength it must not be larger than one 
pixel. At first glance, we might expect that we cannot determine accurate velocities at 
all from such small shifts. As we will show later in this chapter (section 17.4.5), these 
small shifts constitute no real problem, since the velocities arenot extracted from just 
two consecutive images. 

The larger problern is that image sequences generally do not meet the temporal 
sampling condition. In this respect it is important to note that the standard sampling, 
i. e., taking the mean gray value over the elapsed time interval, is not sufficient to avoid 
temporal aliasing as shown in section 2.3.5. The problern is even more pronounced if we 
take sequences with short exposure times, e. g., video image sequences with 30 frames/s 
and exposure times less than 33 ms. 

Under certain circumstances, we still can solve the correspondence problem. If our 
scene contains only rigid objects, then all spatial structures in which we can decompose 
the object by computing the Fourier transform, move with the same speed. In this case 
we can apply a coarse-to-fine strategy if the object contains wave numbers over a wide 
range. A classical example is an edge. The bandpass decomposition of the edge with the 
Laplace pyramid shows that alllevels of the pyramid contain a signal {figure 17.3). On 
the coarsest level of the pyramid, the shift is smaller than half the dominant wavelength 
at this level. In this case we can determine the displacement unambiguously. Because of 
the low resolution it will be only a crude estimate, but it is sufficient to shift one of the 
two images with the displacement that has been determined. At the next level, we only 
need to compute a correction, which will certainly be smaller than half a wavelength. 
In this way we can continue iteratively until we reach the bottom of the pyramid. 

In this way our considerations about the correspondence problern lead on to a multi
grid algorithm on a pyramidal image data structure. We should bear in mind, however, 
that the proposed coarse-to-fine strategy is not a generally valid approach. In other 
cases, for example, an image sequence with waves where each wave component is trav
elling with a different speed depending on its wave number, the coarse-to-fine strategy 
is not adequate. 

17.3 Velocity Filtering 

All objects moving with a given velocity u 0 lie on a plane in the kw space which is 
described by {17.5). Therefore we can use linear filter operations to select objects which 
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Figure 17.3: Illustration of the correspondence problern with an edge decomposed by a Laplace pyra
mid. 

are moving in a certain velocity range. We are familiar with such linear filter operations 
from chapters 5-7. We just need to extend these concepts from two to three dimensions. 
New, and possibly confusing at the beginning is the fact that one of the coordinates is 
the time coordinate. 

17.3.1 Projection Filters 

First we discuss the selection of objects which move precisely with the velocity u. The 
transfer function of a filter, hu, that selects the objects with exactly this property is a 
plane 

hu = 6(uk- w). (17.9) 

The corresponding convolution mask in the zt space is a 6 line normal to the plane in 
the kw space. 

hu = 6(z- ut). (17.10) 

Thus the selection of objects in the zt space moving with the velocity u is obtained by 
convolution with a 6 line. This convolution is nothing eise but a projection operation 
which adds up image by image with the corresponding shift due to the slope of the 6 
line. We obtain objects with no motion, e. g., by simple adding up all the images of the 
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image sequence 

g(z; u = 0) = 5(z) * g(z, t) = jdt jd2x' o(z- z')g(z', t) = jdt g(z, t). (17.11) 
t x 1 

The selection of objects moving with the velocity u 0 is given correspondingly as 

g(z; u = u 0 ) = 5(z- u 0t) * g(z, t) = jdt g(z- u 0 t, t). (17.12) 
t 

At this point it is important to note the close connection between the projection of 
a three-dimensional image onto a two-dimensional image plane via a parallel projection 
(section 13.3.2) and the selection of a velocity component in the three-dimensional zt 
space. Both operations are mathematically identical and are described by the same 
projection operator hu. Through this analogy, the Radon transform (section 13.3.2) 
has a new meaning. We can regard the Radon transform in a slightly modified form as 
the decomposition of the velocity components of an image sequence. 

So far we have discussed projection filters only using the infinite, continuous space. 
For practical applications, it is very important to consider the influence of both spatial 
and temporallimitation in the real-world images. Any Iimitation of an image sequence 
means multiplication of the image sequence by a corresponding window function. As a 
window function we take a three-dimensional Gaussian function of the form 

w(z, t) = exp (- 2z:~) exp (- 2t:l), (17.13) 

which shows the same shape in the Fourier domain 

(17.14) 

with reciprocal standard deviations according to the uncertainty relation. In order to 
obtain the effective transfer function for the projection operator of a windowed image 
sequence, we need to convolve the transfer function of the projection operator (17.9) 
and obtain 

(17.15) 

The 5 plane is blurred in the k directions with a standard deviation of 1 Irr x and in 
the w direction with 1 Irrt. In effect, the velocity resolution is limited. The velocity 
resolution is inversely proportional to the wave number as indicated in figure 17.4. The 
velocity resolution becomes very poor for low frequencies and low wave numbers. A 
sufficient number of periods and wavelengths must be contained in the image sequence 
for projection operators to become velocity selective. 



326 17 Space-Time Images 

/ 

Figure 17.4: Illustration of the limited velocity resolution of a projection operator applied to a win
dowed image sequence. 

17.3.2 Gabor Filters 

The discussion about projection filters in the last section showed that they are not 
very appropriate filters for real-world image sequences since the velocity resolution is 
inversely proportional to the wave number. This means that we can only obtain a 
good velocity resolution for high wave numbers. In this section we discuss another 
dass of velocity filters which selects a certain wave number and frequency range. This 
means that these filters respond to spatial structures in the chosen wave number range 
around k0 moving with the normal velocity u.L = wflkl. From such a filter operation, 
we cannot tell the true velocity of the object, since we select a spatial structure with 
a certain local orientation so that we cannot determine the complete velocity vector. 
Geometrically, we can illustrate this fact in the following way. Wehave obtained only 
two points on the planethat determine the velocity in the kw space, the point (k0 ,w0 ) 

and because of symmetry the point ( -k0 , w0 ) (spectra from real-valued images are 
Hermitian). Through these points we can lay many planes which have in common the 
line connecting the two points. 

Gabor filters belong to the dass of quadrature filters which we discussed in section 7.2 
and have the advantage that they can give a phase-independent "energy" estimate for 
the spatiotemporal gray value structure. Gabor filters are designed in the Fourier 
domain. Basically, they consist of a Gaussian function shifted to the point (k0 ,w0 ). To 
construct a quadrature filter, we need an even real and odd imaginary transfer function 
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of the following form 

t[+(k,w) 

+ 

q_(k,w) 

1 [ ( (k- ko)2a;) ( (w + wo?at) 2 exp- 2 exp- 2 

( (k + k0 ) 2a;) ( (w- w0 ) 2at)] exp- 2 exp- 2 , 

~ [exp ( _ (k- ~o)2a;) exp ( (w + ~o?at) 

exp ( _ (k + ~o)2a;) exp ( (w- ~o)2af)] . 
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(17.16) 

The convolution mask can easily be computed with the aid of the shift theorem ( ap
pendix A.2): 

1 ( z 2
) ( e ) ---cos(k0 z -w0t)exp --2 exp --2 , 

21rO"xO"t 2ax 2at 

1 ( z2) ( t2 ) q_(z, t) = --- sin(k0z- wot) exp --2 2 exp --2 2 • 
21rO"xO"t O"x O"t 

(17.17) 

The convolution masks constitute plane waves limited by a Gaussian window func
tion to a small number of periods and wavelengths, i. e., a wave packet. The frequency 
w0 and the wave number k0 of this wave packet correspond to the maximum of the trans
fer function, while the width of the mask is inversely proportional to the corresponding 
width of the transfer function 

(17.18) 

A narrow frequency and wave number response results in a coarse temporal and spatial 
resolution, and vice versa. 

17.4 1-D Motion Determination 

Since motion determination becomes more complex for higher dimensions, we take a 
stepwise approach. In this section we discuss motion analysis in a two-dimensional zt 
space with one space and one time coordinate. This allows us to work out the basic 
concepts. Then we can extend these to the two-dimensional motion problem. 

17.4.1 Conversion of the Differential Method into a Filter 
Method 

The continuity of the optical flux led to a simple solution for the velocity determination 
in the one-dimensional case. For further considerations in this section, we modify 
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Figure 17.5: Transfer functions and convolution masks for the Gabor filter pairs in a two-dimensional 
xt and kw space respectively: a) to d) selecting objects moving to the right; e) to h) objects at rest. 
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(15.32) for the one-dimensional case 

(17.19) 

This equation summarizes the essentials of the differential method well: At each pixel 
in the image, we compute the ratio of the temporal and spatial derivative and weigh 
the result with the factor w(j) = g;(j). We now want to convert this approach step by 
step into a filter method which can be applied in a two-dimensional space-time image. 
1. Computation of the spatial and temporal derivatives using the operators 

From an image pair, we have only one choice to compute the temporal derivative, 
namely to take the difference image. This corresponds to the asymmetric derivation 
operator D = [1 - 1]. In a space-time image we do not have this limitation. We 
can use the much more suitable symmetric operators as D = 1/2 [1 0 - 1] or a more 
precise higher-order approximation, as discussed in section 6.3.5. 

2. Next we perform two point operations, the multiplications 9x9x and 9x9t, which we 
can express in the operator notation as 

Be aware that these operations are nonlinear. 
3. The sums in (17.19) are necessary to average the results from different pixels in a 

small neighborhood. We can effectively perform this operation with a smoothing 
operator. The mask size gives the size of the window from which we take the pixels 
and also determines the spatial resolution of the computed velocity. In contrast to the 
simple differential method using only two images, we can now extend the smoothing 
along the time coordinate. In this way, the filter approach extends the differential 
method to a more robust velocity determination. In operator notation, we can write 

Bxt is a smoothing operator in both the x and t directions, e. g., a binomial filter. 
4. Finally, we obtain the velocity by dividing the results of the two filter operations. 

This leads to the following velocity operator U 

(17.20) 

The filter method is not only simple and effective but also very flexible. First, we can 
determine the spatial and temporal resolution by choosing an appropriate smoothing 
filter Bxt· Second, we can apply any other filtering prior to the application of the 
velocity determination. This allows us to select from the image any other feature 
besides the original gray values. We may apply a high-pass filtering to make the velocity 
determination less dependent on illumination changes. With this prefiltering, we just 
choose the frequency and wave number range which should be used for the velocity 
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determination. We could, for example, first apply a spatial derivative. Then we obtain 
a modified velocity operator 

Jdu = _ Bxt [('Dt'Dx) · v;] 
Bxt('D~ ·V~) ' 

(17.21) 

which is very similar to the differential geometric method discussed in section 15.2.3 
(see (15.41)) if we include the weighting factors computed with the v; operator. 

17 .4.2 The Tensor Method 

As discussed at the beginning of this chapter, motion corresponds to orientation. Con
sequently, the orientation analysis in a two-dimensional image and the motion analysis 
in the xt space are equivalent. We just need to exchange one of the space coordinates 
by the time coordinate. Thus we can simply use all the concepts discussed in chap
ter 7 to determine one-dimensional velocity. In this section we use the tensor method 
(section 7.3). From (7.27) and (17.2) we obtain the following velocity operator 

( 1 2ßxt('Dt · 'Dx) ) 
U = tan r.p = - tan -arctan8 ( ) B ( ) . 

2 xt 'Dx · 'Dx - xt 'Dt · 'Dt 
(17.22) 

Surprisingly, this operator differs considerably from the filter approach derived from 
the differential method (17.20). Is one of the two approaches wrong? We can first 
investigate this question by analyzing how both operators respond on an image with a 
constant velocity (17.3). The spatial and temporal derivatives are then given by 

ßg 
ßx 
ßg 
ßt 

g'(x- uot), 

= -uog'(x- uot). 

(17.23) 

With g' we denote the derivation of the gray value with respect to the one-dimensional 
coordinate. Provided that 

b(x, t) * g12(x- u0t) > 0 

we obtain from (17.20): 

_ "'_ -u0 b(x, t) * g'2(x- u0t) _ 
u - tan '+' - - - u0 

b(x, t) * g'2(x- u0t) 
(17.24) 

and from (17.22): 

u = tanif> 

t ( 1 t 2uob(x,t)*g12(x-u0t) ) - an - arc an -:-:--:----:::-:----'---'+---=-..".:...,---....,..-~....,..,.---.,. 
2 b(x, t) * g'2(x- u0t)- u5b(x, t) * g'2(x- u0t) (17.25) 

( 1 2u0 ) tan - arctan --2 = uo. 
2 1- u0 
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Despite the different operators, both give identical and correct results for an ideallocal 
orientation. However, the operators differ in image regions which do not show a constant 
velocity. In this case, the simple filter approach offers no way to decide whether the 
estimated velocity is meaningful or not. In contrast, the tensor method gives useful 
criteria to detect such situations (see section 7.3.3). 

17 .4.3 The Quadrature Filter Set Method 

In two-dimensional images, we can also determine the orientation with the quadra
ture filter set method as discussed in section 7.2. This method can be used for one
dimensional velocity determination as well. Such methods are also the basis of models 
used to describe motion vision in biological visual systems. Gabor-like quadrature fil
ters are used for this purpose to determine the squared amplitude of the gray values 
in a certain frequency-wave number range, for which the terms space-time-energy and 
motion energy have been coirred [Adelson and Bergen, 1985, 1986; Heeger, 1988]. These 
terms can easily be misunderstood. It is not the kinetic energy of the moving objects 
that is referred to but the energy (squared amplitude) of a signal at the sensor level in 
a certain kw interval. 

One of the simplest models for one-dimensional motion vision uses just three quadra
ture filters. In section 7.2.2 we proved that this is the minimum number necessary. This 
set of directional filters detects objects which are moving to the right, to the left, and 
those which arenot moving. We derrote these quadrature Operators by n, c, and s. 
Then we can obtain an estimate of the one-dimensional velocity using the operator 
[Adelson and Bergen, 1985; 1986] 

·u= n-c s . (17.26) 

In order to connect this approach to our previous work, we show how to understand 
the simple filter or differential approach as an energy extraction method. First we 
rewrite the formula of the filter approach with a slight modification to smooth the 
images with the binomial mask Bxt, before we apply the derivative operators 

U = _ Bxt [(DtBxt) · (DxBxt)] . 
Bxt [(Dxßxt) · (Dxßxt)] 

(17.27) 

U sing the operator identity 

(17.28) 

we can rewrite (17.27): 

U = _ Bxt {[(Dx + Dt)Bxt] · [(Dx + Dt)Bxt]- [(Dx - Dt)Bxt]· [(Dx - Dt)Bxt]} 
Bxt[(DxBxt) • (DxBxt)] 

(17.29) 
Thus we obtained a very similar expression as (17.26) with the filter operators 

R' (Dx + Dt)Bxt, 
C' (Dx- Dt)Bxt, (17.30) 
S' DxBxt· 
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Figure 17.6: Transfer functions for the convolution operators (17.30) to detect objects moving to the 
right, left, or at rest: a) C', b) R', and c) S'. 

Thesefiltersare derivations ofbinomial filters. The transfer functions show that objects 
moving to the right, the left, and at rest are selected (figure 17.6). However, these filters 
are not quadrature filters. Squaring of the filter responses and further smoothing with 
Bxt, however, approximately results in a phase-independent detection of the squared 
amplitude as with a quadrature filter. For a more detailed discussion of biological 
motion vision, the reader is referred to the collection of papers on "image motion" m 
J. Opt. Soc. Am. A, Vol. 2, February 1985. 

17 .4.4 The Phase Method 

Principle 
In section 17.2 we used periodic spatial structures to illustrate the sampling theorem 
for space-time images. The position and thus also the displacement of such structures 
is essentially given by the phase 

g(x, t) = 9o exp[-i</>(x, t))] = g0 exp[-i(kx- wt)]. (17.31) 

The phase depends both on the spatial and temporal Coordinates. For a sinusoidal 
gray-value pattern, the phase varies linearly in time and space 

</>(x, t) = k0x- wt = kox- ukot, (17.32) 

where ko and w0 are the wave number and the frequency of the pattern, respectively. 
Computing the temporaland spatial derivatives of the phase, i. e., the gradient in the xt 
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spa.ce, yields both the wave number and the frequency of the moving periodic structure 

(17.33) 

Then the velocity is given as the ratio of the frequency to the wave number 

u = ~ =- ~; ;:! . (17.34) 

This formula is very similar to the estimate based on the optical flow (15.5). In both 
cases, the velocity is given as a ratio of temporal and spatial derivatives. Thus at first 
the phase method appears to offer nothing new. Replacing the gray value by the phase 
is, however, a significant improvement, since the phase is much less dependent on the 
illumination than the gray value itself. Using only the phase signal, the amplitude of 
the gray value variations may change without affecting the velocity estimates at all. 

So far, our considerations have been restricted to an ideal periodic gray value struc
ture. Generally, however, images are composed of gray value structures with different 
wave numbers. From such a. structure we cannot obtain useful phase estimates. Conse
quently, we need to decompose the image into a set of wave number ranges. We may, 
for example, use a set of Gabor filters which have been introduced in section 17.3.2 and 
which select a certain wave number and frequency range from an image sequence. The 
even and odd filters, + Q and - Q, result in filter responses which show either no phase 
shift or a 7r/2 phase shift. Consequently, we can use both filters to compute the phase 
as 

..!.( ) q_(x, t) 
'+' x,t = arctan ( )" 

q+ x,t 
(17.35) 

From the partial derivatives, we obtain the velocity estimate according to (17.34). 

lmplementation 
Direct computation of the partial derivatives from the phase signal is not advisable 
because of the discontinuities in the phase signal. From equation {17.35) we obtain 
phase values which are additively ambiguous by 27r and thus cause discontinuities in the 
phase signal if the values are restricted in the principal interval [-1r, 1r[. As pointed out 
by Fleet and Jepson [1990] and Fleet [1990], this problern can be avoided by computing 
the phase gradient from gradients of q+(x, t) and q_(x, t). Webegin with (17.35) 

..1.( ) q!(x,t) (V'.,tq-(x,t) _ q+(x,t)V'.,tq-(x,t)) V' xt'f' x, t = 2 2 ..:...:....-'---..:.----';;-2 ..,....=-:...:,...--'---'~ 
q+(x, t) + q_(x, t) q+(x, t) q+(x, t) 

q+(x, t) V' xtq-(x, t)- q_(x, t) V' xtq+(x, t) 
(17.36) 

qHx, t) + q:(x, t) 
This formulation of the phase gradient also eliminates the need for using a trigonometric 
function to compute the phase signal. Using {17.34), the velocity estimate reduces to 

oq_ oq+ 
u = q+ 7ft - q_ 7ft 

oq+ oq_ · 
q_--q+-

ßx ßx 

{17.37) 
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17 .4.5 Accuracy of Motion Determination 

Compared to other instruments, images only deliver rather low-resolution data. From 
our considerations on the sampling theorem in section 17 .2, we know that the inter
irnage displacement must notbelarger than half a wavelength of the smallest structures. 
Because of this restriction, displacement estimates would be worthless if they could not 
be performed with subpixel accuracy. 

In order to test the accuracy of algorithms, computer-generated image sequences 
are more suitable. In this way, we know the true velocity exactly and can uncouple 
the algorithm-related errors from those related to the imaging sensor and the image 
formation. In an error analysis, systematic and statistic errors must be distinguished. 
Systematic errors in the velocity estimate are caused by deviations of the discrete deriva

tive operators from the ideal derivative operator. This error is a function of the wave 
number. Statistical errors are introduced by noise in the signal which can be simulated 
by adding zero-mean Gaussian noise to the image sequence. 

Figure 17.7 shows the result from an error analysis using the tensor method (sec
tion 17.4.2) and noisy sinusoidal waves with wavelengths between 2.4 and 20 pixels and 
an amplitude of 500 bits moving with 0.137 pixels/frame [Jähne, 1990]. Gaussian noise 
with a standard deviation of 50 bits was added to the image sequence. The compu
tations were performed with 12-bit images. A 17 X 17 X 5 binomial mask was used for 
spatiotemporal smoothing in (17.22). 

Considerable deviations of the computed displacement from the correct solution oc
cur when the wavelength comes close to the limiting value of two pixels (figure 17.7a). 

These systematic errors occur because the discrete spatial derivative operator becomes 
more and more erroneous for smaller wavelengths (see figure 6.24 in section 6.3.5). They 
reduce somewhat for higher-order approximations of the derivative operators but are 

still considerable. For large wavelengths, however, the systematic error is less than a 
1/100 pixel distance. Despite the low signal to noise ratio of 5, the statistical error 
generally is low ( figure 17. 7b). Since the response to the derivative operator is inversely 
proportional to the wavelength, the statistical error increases with the wavelength. The 
standard deviation is twice as large if the temporal smoothing is omitted (figure 17. 7b ). 
Unfortunately, the statistical and systematic errors show opposite trends: at low wave
lengths, the statistical error is low, but significant systematic errors occur. 

Systematic errors at low wavelengths can be reduced by a simple iterative approach. 
Using (17.22), the first estimate for the displacement is applied to transform the image 
sequence into a coordinate system moving with this estimated velocity and thus only a 
further correction term to the displacement has to be computed: 

x' = x + u<klt 

(17.38) 

Figure 17.8 shows that the iteration converges quickly to the correct displacement over 
nearly the full range of displacements allowed (±>../2). 
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Figure 17.7: Application of the tensor method for 1-D velocity determination to computed image 
sequences, in which a noisy sinusoidal wave is moving with s = 0.137 pixels/frame. Different discrete 
approximations for the first-order derivative operators have been used: + (1) D, * (2) D, 0 (1) D, x (1)D 
without temporal smoothing: a) computed displacement as a function of the wavelength; b) standard 
deviation of the displacement estimate as a function of the wavelength; from Jähne (1990]. 
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Figure 17.8: Test of the iterative refinement of the velocity estimate for a sinusoidal pattern with 
a wavelength of 5.13 pixels. The computed displacements are shown as a function of the number 
of iterations for displacements between 0.317 and 2.413 pixels/frame. The horizontallirres mark the 
correct values; from Jähne [1990]. 

17.5 2-D Motion Determination 

In this last section we turn to the problern of estirnating two-dirnensional rnotion frorn 
space-tirne irnages. Herewe discuss how to extend the approaches discussed previously 
in this chapter for 1-D rnotion determination to two dirnensions. 2-D rnotion analysis 
has already been discussed in chapters 15 and 16 and we are aware of the cornplexity of 
the problern and the open questions. This final section of the book will also not provide 
final answers. It is rather an outlook onto the current research and should give an 
irnpression that the extension of irnage sequence analysis frorn two to rnany irnages of a 
sequence is a significant step ahead. We will briefly discuss all three rnajor approaches, 
narnely, the filter set, the tensor, and the phase rnethod. 

17.5.1 The Quadrature Filter Set Method 

In three publications, Heeger [1987a,b; 1988] describes a rnethod to estirnate two
dirnensional displacernent vectors using a set of space-tirne quadrature filters. While 
it is easy to arrange the center frequencies and wave nurnbers in two-dirnensional xt 
irnages (see section 7.), it is not trivial for 3-D zt irnages. Heeger, for exarnple, uses 
a three sets of four space-tirne Gabor filters. Gabor filters have been discussed in sec-
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tion 17.3.2. Each filter set lies on a plane parallel to the k1 k2 plane. One is locatd at 
w = 0 to detect static patterns in different directions. The two other sets are located 
above and below the k1 k2 plane and filter structures which are moving in positive and 
negative axes directions, respectively. The centers of all the filters lie on a cylinder. 
The axis of this cylinder is the frequency axis. Therefore the all the sets select a certain 
spatial scale from the image sequence. Each set contains filters at angles of 0°, 45°, 90°, 
and 135°to the k1 axis. 

This filter arrangement combines spatial orientation and motion analysis. Heeger's 
approach contains the following steps: 
• Computation of a Gauss pyramid for each image of the sequence. This step allows 

the same set of Gabor filters to be used for different spatial scales. Heeger keeps 
the temporal resolution the same for all levels of the Gauss pyramid. This means 
that the filters applied in higher levels of the pyramid extract higher velocities. The 
center velocities of the filters on the different levels of the pyramid are given by 
w0 /k0 ,w0 /2k0 ,w0 /4k0 , · • ·. Heeger does not combine the filter results from different 
levels of the pyramid but just selects the level which is best adapted for the displace
ments in the sequence. For displacements between 0 and 1.25 pixels/frame he takes 
the lowest level, for displacements between 1.25 and 2.5 the second lowest, and so on. 

• Highpass filtering of all images on the selected plane in order to remove constant gray 
values and structures with low wave numbers. 

• Convolution of the image sequence with the twelve quadrature filters. A fast algo
rithm using separable convolution masks is applied [Heeger, 1987b]. 

• Smoothing of the filter results with a Gaussian filter. 
• Estimation of the two-dimensional velocity vectors from the 12 filter responses. Heeger 

uses a least-square method. A unique solution is gained only if the gray values are 
not spatially oriented. 

Heeger was the first to report a filter-based approach to two-dimensional motion 
analysis. Generally, filter set methods are difficult to use in three dimensional spaces. 
The quadrature filter set that we used in section 7 .2.1 for orientation analysis in two di
mensions showed the important feature that the sumofall transfer functions resulted in 
an isotropic function. In section 7.2.2 we found that this was a requirement forasimple 
and accurate orientation estimate. Heeger's filter set does not fulfil this requirement. 

17.5.2 The Tensor Method 

In this section the tensor method is extended from two to three dimensions. Grientation 
analysis with the tensor method has been discussed in depth in section 7.3. 

With the tensor method we think of the spectrum 19(k,w)l of a neighborhood as 
the density function of a rotary body in kw space. The inertia for rotation around an 
axis in the (k0 ,w0 ) direction is given by: 

00 

J(zo, to) = j dk2 dw d2 [(k,w), (ko,wo)]lg(k,wW, (17.39) 
-oo 
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where the spectrum of the local neighborhood centered at (zo, to) is 

00 

g(k,w, k 0 ,w0 ) = j dx2 dt w(ko- k,wo- w)g(z,w) exp[-i(kz- wt)] (17.40) 
-oo 

where w(ko- k,w0 - w) is a window function which determines the size of the neigh
borhood. In section 7.3 we discussed that the elements of the inertia tensor can be 
computed directly in the space domain using first-order partial derivative operators 
and smoothing operators. Using the abbreviations 

the inertia tensor is given by 

Jxx = Bxt(Vx · Vx) 

Jyy = Bxt(Vy · Vy) 

.:!tt = Bxt(Vt · Vt) 

Jxy = Bxt(Vx · Vy) 

3xt = Bxt(Vx · Vt) 

Jyt = Bxt(Vy · Vt), 

[ 
.:J!J!J +3tt 

.:J = -Jxy 
-Jxt 

It has the following form in the principal-axes coordinate system (x', y', t'): 

0 

Jx'x' + Jt•t• 
0 

0 l 0 . 
Jx'x' + Jy'y' 

(17.41) 

(17.42) 

(17.43) 

The inertia tensor contains the entire information on the first-order spatial structure 
of the gray value function in a local neighborhood. Without explicitly solving the 
eigenvalue problem, we can distinguish four different cases which can be characterized 
by conditions for the eigenvalues of the inertia tensor. 
• Constant gray value 

The spectrum lies at the origin of the kw space. All elements and eigenvalues of the 
inertia tensor are zero. No velocity information can be gained: 

(17.44) 

• Distributed spatial structure and constant motion 
In this case, the spectrum lies on a plane intersecting the origin. The rotary body is a 
Hat disk. The eigenvector to the Zargest eigenvalue is normal to this plane. Since the 
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motion is constant, the principal-axes coordinate system is moving with the scene. 
Consequently, .:Tt't' is equal to zero, and we obtain from (17 .43) that the maximum 
eigenvalue is the sum of the two others: 

(17.45) 

• Spatial orientation and constant motion 
The spectrum is located on a line in kw space. The gray val!le structure is said to 
show linear symmetry. One eigenvalue is zero. The corresponding eigenvector points 
in the direction of local orientation in the kw space and thus gives both the spatial 
orientation and the velocity in this direction. The conditions for the eigenvectors are 

(17.46) 

• Otherwise 
If none of the above conditions is fulfilled, the spectrum is no Ionger planar, but three
dimensional. All three eigenvalues are larger than zero. The sum of two eigenvalues 
is larger than the third: 

(17.47) 

The reasons for this condition are manifold. It occurs when 
1. the velocity field shows a spatial discontinuity, for example, at the edge of a moving 

object; 
2. the velocity field shows a temporal discontinuity, for example, when two moving 

objects are colliding; 
3. the local neighborhood includes the superposition of the motion of two objects; 
4. in any case, where the continuity of the optical fiow is seriously distorted, for 

example at the edge of the shadow of a moving object or a specular refiex. 
This detailed analysis shows that the tensor method does not only provide a velocity 

estimation but also a Straightforward classification of the spatial structure of a small 
neighborhood with respect to motion analysis. The usage of the tensor method for 
motion analysis has first been proposed by Jähne (1989). He also discusses a fast 
implementation of the eigenvalue analysis. A detailed study of the method is also given 
by Bigün (1991). 

Generally, the methods discussed in this chapter to determine motion in space-time 
images question the classical approaches discussed in chapter 16. There we tried to infer 
the complete motion information from only two consecutive images of the sequence. 
Despite the fact that the locally estimated velocities from only two images are much 
more sensitive to noise and other distortions in the images (see also section 17.4.5), it 
now becomes clear that the determination of a continuous DVF was performed at a too 
early stage. 

From the analysis of a image sequence containing many images we can extract much 
more information, before we need to put the locally gained velocity information together 
to a consistent picture of the motion in the scene. The tensor method provides a direct 
analysis of the discontinuities in the motion field from which we can draw conclusions 
about edges within moving. 

The most radical departure from the classical concept has been formulated recently 
by Fleet and Jepson (1990) and Fleet (1990] with their suggestion to compute only 
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normal velocities from directionally filtered images with the phase method (see sec
tion 17.4.4). The method to combine this normal velocities depends entirely on the 
nature of the scene. Forascene with transparent objects as water surface waves, where 
a local neighborhood can contain the motion of more than one object, we must use 
another method than for a scene with opaque rigid bodies. 



A Mathematical Preliminaries 

In this appendix, important mathematical preliminaries for digital image processing 
are summarized in tabular form. It is thought as abrief repetitorium and ready-to-use 
reference for this book. References to a detailed and adequate treatment are given for 
each subject. 

A.l Matrix Algebra 

A.l.l Definitions 

An ordered set of M elements such as time series of some data is known as a vector and 
written as 

g= 

go 

91 

9M-1 

The nth element of the vector g is denoted by 9n· A matrix G of size M X N is a 
double-indexed ordered set with MN elements 

Go,o Go,1 Go,N-1 

G= 
G1,0 G1,1 G1,N-1 

GM-1,0 GM-1,1 GM-1,N-1 

The matrix is said to consist of M rows and N columns. The first and second index of 
a matrix element denote the row and column numbers, i. e., the y and x coordinates, 
respectively. Thus the matrix notation differs from the standard Cartesian coordinate 
representation by a clockwise 90° rotation. Discrete images will be represented in this 
book by matrices with the starting indices 0 as shown above. All vectors and matrices 
which are related to Coordinates in the two- and three-dimensional space will start with 
the index of 1. For a diagonal element of a matrix, the first and second index are equal. 
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An Mx 1 matrix is also denoted as a column vector, g, and a 1 x N matrix as a row 
vector, gT. 

Some important operations with vectors and matrices are summarized in the fol
lowing table: 

I Operation I Definition 

Transposition c;_n = Gnm 
K 1 

Matrix multiplication G' = G H G~n = L GmkHkn ....."..., ~~ 
MxN MxKKxN k=O 

M 1 

Inner vector product (g,h), gTh, or gh LYmhm 
m-0 

Outer vector product ghT Gmn = Ymhn 

Determinant1 IGI 
M 1 

Trace1 trace( G) LGmm 
m-0 

Inverse matrix1 G-1 G-1G =I 

Eigenvalues1 A Gz =Az 

Eigenvectors1 to eigenvalue A all z ::j; 0 with ( G - .\I)z = 0 
1 Only defined for square matnces (see table below) 

Special types of matrices follow. The superscript • denotes the complex conjugate 
for a scalar or matrix element and the transposed and complex conjugate for a matrix. 

I Name I Definition I 
Square matrix M=N 

Diagonal square matrix Gmn = 0 Vm::j;n 

lm,n = Öm-n = 
1 m=n 

Identity matrix I 
0 else 

Symmetrie matrix G = GT, Gmn = Gnm 

Hermitian matrix G = G*, Gmn = G~m 
Orthogonal matrix a-1 = aT 

Unitary matrix a-1 = G* 

A.1.2 The Overdetermined Discrete Inverse Problem 

The overdetermined discrete inverse problems occurred in sections 13.3:4 and 15.2.2. 
Here we derive the general solution. Given is a set of measurements collected in an N
dimensional data vector d and an N x M model matrix G which relates the measured 
data to the M unknown model parameters in the model vector m: 

d=Gm. (A.1) 
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Generally for N > M, no exact solution is possible but only an estimated solution 
which minimizes the norm of the error vector, e, which is the difference between the 
measured data, d, and the data predicted by the model, dpre' 

e = d- clr,re = d - Gmest> 

llell~ = 'f (a;- fa;imi) (a;- 't,a;kmk). 
•=1 J=l k=l 

Factorizing the sum and interchanging of the two summations yields 
MM N 

llell~ = LLmimkLG;jGik 
j=lk=l i=l 

A 
M N 

2LmiLG;jd; 
j=l i=l 
~ 

B 
N 

+ L:a;a;. 
i=l 

(A.2) 

We find a minimum for this expression by computing the partial derivatives with respect 
to the parameters mq tobe optimized. Only the expressions A and B depend on mq: 

MM N 

LL (8jqffik + 8kqmi) L:G;jGik 
j=lk=l i=l 

M N M N 

LmiLG;iGiq + LmkLG;qGik 
j=l i=l k=l i=l 

M N 

= 2L:miL:G;jGiq 
j=l i=l 

N 

2L:G;qd;. 
8mq i=l 

8B 

We add both derivatives and set them equal to zero: 

ßllell~ M N , N 
-8- = LmkLG;qGik - L:G;qd; = 0. 

mq k=l i=l i=l 

In order to obtain matrix-matrix and matrix-vector multiplications, we substitute the 
matrix G at two places by its transpose GT: 

M N N 

LmkLG~G;k- L:G~d; = 0 
k=l i=l i=l 

and finally obtain the matrix equation 

e~~=e~- (A.3) 
MxN NxM M MxN N 
~ ...____....... 

MxM M 
~ 

M 
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This equation can be solved if the quadratic and symmetric M X M matrix GT G is 
invertible. Then 

( T )-l T ( ) mest = G G G d. A.4 

The matrix (GTG)-1GT is known as the pseudo inverse of G. 

A.1.3 Suggested Further Readings 

Basic matrix algebra is the topic of the classical textbook by Hoffmann and Kunze 
[1971]. An intuitive introduction to discrete inverse problems is given by Menke [1984]. 
Golub and van Loan [1989] and Press et al. [1988] treat algorithms for matrix compu
tations in detail. 

A.2 Fourier Transformation 

A.2.1 Definition 

In one dimension, the Fourier transform of a complex-valued function g(x) is defined 
as 

00 

g(k) = _!_ ldx g(x)exp(-ikx), 
211" 

-oo 

(A.5) 

where k = 211" / >. is the wave number of the complex exponential exp ( -ikx) with the 
wavelength >.. The back transformation is given by 

00 

g( x) = j dk g( k) exp (ikx) . (A.6) 
-oo 

A function g( x) and its Fourier transform g( k) form a Fourier transform pair denoted 
by 

g(x) o---. g(k). 

The complex exponentials, the kernel of the Fourier transform, constitute an orthonor
mal basis 

00 I dx exp(-ik'x)exp(ikx) = 21r8(k'- k). (A.7) 
-oo 

The n-dimensional Fourier transform is defined by 
. 00 

g(k) = (2!)n I dnx g(z)exp(-ikz). 
-oo 

(A.8) 

The kernel of the multidimensional Fourier transform is separable: 
n 

exp( -ikz) = II exp( -ik;x;). (A.9) 
i=l 
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Therefore the n-dimensional Fourier transform can be separated in n one-dimensional 
Fourier transforms. For example, the two-dimensional Fourier transform can be written 
as 

g( k) = (2~ )2 _l dx2 [ 2
1
71' _l dx1 g( z) exp ( -ik1xt)] exp ( -ik2x2 ) • 

The inverse Fourier transform is defined by 

00 

g(z) = j dnk g(k)exp{ikz). 
-oo 

A.2.2 Properties of the Fourier Transform 

(A.lO) 

(A.ll) 

The theorems summarized here are valid for the Fourier transform in n dimensions. Let 
g(z) and h(z) be complex-valued functions, the Fourier transforms of which, g(k) and 
k(k), do exist. Let a and b be complex-valued constants and s a real-valued constant. 

I Property I Space domain I Fourier domain 

Linearity ag(z) + bh(z) ag(k) + bk(k) 

Scaling g(sz) g(k/s)/lsl 
n n 

Separability rr g(x;) flg(k;) 
i-1 i-1 

Shifting g(z- z 0 ) exp( -ikz0 )g( k) 

Modulation exp(ik0 z )g( z) g(k- k0 ) 

Derivation 
og(z) 

ik;g( k) 
OX; 

Derivation -ix;g(z) 
ßg(k) 
8k; 

00 

Convolution j dnx' g(z')h(z- z') (27r)n g(k)k(k) 
-oo 

00 

Multiplication g(z)h(z) (27r)n J dnk' g(k')k(k- k') 
-00 

00 

Spatial Gorrelation j dnx' g(z')h(z' + z) {27r)n g(k)h*(k) 
-oo 

00 00 

Inner product j dnx g(z)h*(z) {27rt J dnk g(k)h*(k) 
-oo -oo 
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The following table lists important symmetry properties of the Fourier transform: 

I Space domain I Fourier domain I 
Even, odd g( -z) = ±g(z) Even, odd 9(-k) = ±9(k) 

Real g(z) = g*(z) Hermitian 9(-k) = g*(k) 

lmaginary g(z) = -g*(z) Antihermitian 9( -k) = -g*(k) 

Rotational symmetric g( lz I) Rotational symmetric .9(1kl) 

A.2.3 lmportant Fourier Transform Pairs 

I Space domain I Fourier domain 

S function S(x) 
1 

-
211" 

Box funotion II(x) ~ { :/2 

lxl < x0 /2 
. sin(x0 k/2) 

lxl = x0 /2 axosmc(xok/2) = axo xok/2 

lxl > x0 /2 

Cosine function cos( k0 x) 
1 2 (S(k- ko) + S(k + k0 )) 

Sine function sin( k0 x) 
I 2 (S(k- ko)- S(k + k0)) 

00 00 

S comb L S(x- nßx) L S(k-21rnjßx) 
n=-oo u=-oo 

1 ( x2
) Gauss function V'fir exp --2 u 211" 2u exp(-~) 2/a-2 

A.2.4 Suggested Further Readings 

A good introduction to the Fourier transform with respect to image processing can be 
found in Gonzalez and Wintz [1987]. Bracewell [1965] gives a more detailed discussion 
of the Fourier transform. 

A.3 Discrete Fourier transform (DFT) 

A.3.1 Definition 

The one-dimensional DFT maps a complex-valued vector g onto another vector iJ of a 
vector space with the same dimension M: 

1 M-I ( 21ri mu) 1 M-I 
9u = M L9m exp -~ = M L9m wMmu, 

m=O m=O 

(A.12) 
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where 

WM = exp c~). 
The back transformation is given by 

M-1 ""A wmu 9m = L..J9u M · 
u=O 
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(A.13) 

(A.14) 

In two dimensions, the DFT maps a complex-valued MX N matrix onto another 
matrix of the same size: 

1 M-1 N-1 ( 21ri mu) ( 27ri nv) 
Guv = MNL LGmnexp -~ exp -~ 

m=O n=O 
(A.15) 

1 M-1 (N-1 ) 
MN ~0 E Gmn w,vnv wMmu. 

Theinverse 2-D DFT is given by 

M-1N-1 

Gmn = L LGuvWA'f"W,V". (A.16) 
u=O v=O 

A.3.2 lmportant Properties 

The following theorems apply to the 2-D DFT. Let G and H be complex-valued Mx N 
matrices, G and if their Fourier transforms, and a and b complex-valued constants. 

Property 

Mean 

Linearity 

Shifting 

Modulation 

Finite difference 

Finite difference 

Convolution 

Multiplication 

Spatial Correlation 

Inner product 

Energy conservation 

Space domain 

1 M-1N-1 

MNL LGmn 
m-On-O 

aG+bH 

Gm-k,n-1 
W -kvw-tqG 

M N m-k,n-1 

(Gm+I,n- Gm-1,n)/2 

(Gm,n+1- Gm,n-1)/2 
M-1N-1 

(G * H)mn = L L GktHm-k,n-1 
k-0 /-0 

M-1N-1 

(G*H)mn = L LGktHm+k,n+l 
k-0 1-0 

1 M-1N-1 

MN L LIGmnl2 

m-On-O 

Wave number domain 

Go,o 

aG+bii 

w-kuw-t"G 
M N "" 

i sin(27rV / M)Guv 

M 1N 1 

( G * if)uv = L L GpqHu-p,v-q 
p=O q=O 

M-1N-1 

L LGuvii:v 
u=O v=O 
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A.3.3 Important Transform Pairs 

I Space domain 

1 m = O,n = 0 
8 function bmn = 

0 eise 

Constant function Cmn = 1 

. . (27rpm 21rqn) 
Cosme funct1on cos ~ + --;;;-

A.3.4 Suggested Further Readings 

I Fourier domain 

1 
MN 

buv 
1 
2 ( bu-p,v-q + bu+p,v+q) 

The one-dimensional discrete Fourier transform is covered in detail by most textbooks 
on signal processing such as Oppenheim and Schafer [1989]. Special attention to the 
2-D DFT is given by Lim [1990] and Jaroslawskij [1985]. Digital spectral analysis is 
discussed in detail by Marple [1987] and fast algorithms to compute the DFT by Blahut 
[1985]. 



B PC-Based Image Processing Systems 

B .1 Overview 

In this appendix we describe the architecture of modern PC-based image processing 
systems. It is not intended to give a survey of the market. Instead, we explain the 
basic components of image processing systems and thus provide some basic knowledge. 
It is important to be aware that different classes of image processing hardware are 
available in order to make an intelligent choice for a certain application. Generally, we 
can distinguish four classes of frame grabbers: 

Hardwired frame grabbers. This type of image processing cards were the first to 
emerge on the micro computer market at the end of the 1970s and initiated the 
widespread use of digital image processing in scientific applications. The functions 
of these boards are hardwired and controlled via a set of registers in the input/output 
space of the host. Display of video images requires aseparate RGB monitor. A typical 
example is the PCVISIONplus board from Imaging Technology (figure B.2a). 

Modular image processing systems with a pipelined video bus. A video bus system 
allows the integration of special purpose processing elements in a modular way to adapt 
the hardware to the processing needs. Certain types of image processing operations 
can then be performed much faster, most of them in real time. Examples for high
end modular image processing systems with a pipelined video bus include the Modular 
Vision Computers (MVC) from lmaging Technology (figure B.3), the IMAGE series 
from Matrox, and the MaxVideo 20 from Datacube. An external video bus system 
is also included in medium-cost image processing boards such as the VISIONplus-AT 
series from Imaging Technology. 

Frame grabber with programmable processor. This type of image processing boards 
include its own graphics, signal or general purpose processor to enhance image pro
cessing capabilities. Standard tools such as C-compilers and development tool kits are 
available to program the boards in a much more flexible and portable way than it would 
ever be possible with a hard-wired system. As an early example, we will consider the 
AT-Vista board from Truevision (figure B.2b). 

Frame grabbers with fast bus to PC RAM. With the advent of fast bus systems for 
the PC such as the VESA local bus and the PCI bus, the way is paved for a new 
generation of frame buffers. These bus systems are fast enough that digitized image 
data can be transferred in real time to the DRAM of the PC. Since the bottleneck 
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of slow transfer of image data is now removed, processing of image data on the PC 
CPU is now much more attractive. A frame buffer now needs to include only video 
input circuits and a DMA controller. Display of images can be performed by the PC 
graphics board. In this way, image processing hardware becomes much eheaper and a 
more integral part of PCs. Examples of frame grabbers of this kind include the Matrox 
Meteor, the Data Translation DT3155, and the PC..EYEl from ELTEC (figure B.9). 

We will discuss the major components of image processing boards, which are the 
video input (section B.2), the frame buffer (section B.3), the video output (section B.4), 
and the interface to the host processor. Pipelined video bus systems with dedicated 
image processing elements are described in section B.5 and are contrasted with pro
grammable image processing systems in section B.6. Block diagrams of the boards 
discussed as typical examples can be found at the end of this appendix. 

B.2 Video Input 

The video input component is very similar in all frame grabbers (figures B.2a, B.8 and 
B.9b). First, the analog video signal is processed and the video source is synchronized 
with the frame buffer in a suitable way. Then the signals are digitized and stored after 
preprocessing with the input look-up table in the frame buffer. 

Analog Video Signal Processing 

All the systems which only process black-and-white video signals include a video mul
tiplexor. This allows the frame buffer to be connected to a nurober of video signals. 
Via software, it is possible to switch between the different sources. Before the analog 
video signal is digitized, it passes through a video amplifier with a programmable gain 
and offset included in most boards. In this way, the incoming video signal can best be 
adapted to the input range of the analog-digital converter. 

The MVC with the Color Acquisition Module and the Vista board, (figure B.4b and 
B.2) are examples for frame grabbers that can digitize color images from RGB video 
sources which provide a separate red, green, and blue signal. In order to capture com
posite color video signals in which the luminance and color information is composed 
in one video signal, a decoder is required which splits the composite signal into the 
RGB video signals. Such a decoder is already built into the Color Acquisition Mod
ule of the MVC (figure B.4b). These devices can also decode Y-C signals according 
to the S-VHS video standard. The Color Acquisition Module also features real time 
color space conversion (figure B.4b). Color video signals can be converted to and from 
various color coordinate systems. Of most importance for image processing is the HSI 

(hue, saturation, intensity) color space. In composite, Y-C, and YUV video signals, the 
resolution for the color signal is considerably lower than for the luminance signal. Con
sequently, only three-chip color cameras with RGB video output can be recommended 

for scientific applications. Color acquisition modules can also be used to capture video 
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Table B.l: lmportant parameters of the American (R.S-170) and European (CCIR) video norms. 

Horizontal scan time 
Horizontal blank time 
Horizontal scan frequency 
Vertical scan time 
Vertical blank time 
Vertical scan frequency 
Nurober of rows 
Active rows 

RS-170 CCIR 
63.5556 J.tS 
10.7556J,tS 
15.7343kHz 
16.6833ms 
1.2711 ms 
59.9401 Hz 
525 
4851 

64.ÜJ,tS 
11.8414J,tS 
15.625kHz 
20.0ms 
1.5360ms 
50.0Hz 
625 
5761 

1The first and last row are half rows. 

signals from several synchronized black-and-white video cameras. In this way, stereo 
images or other types of multichannel images can be acquired and processed. 

Synchronization 

Besides the image contents, a video signal contains synchronization signals which mark 
the beginning of an image (vertical synchronization) and the image rows (horizontal 
synchronization). These signals are extracted in the video input by a synchronization 
stripper and used to synchronize the frame buffer (image display) with the video input 
via a phase-locked loop (PLL). 

Some PLL circuits do not work properly with instable video sources such as video 
recorders. If digitization of recorded images is required, it should be tested whether 
the images are digitized without distortions. Digitization of still images is especially 
critical. It cannot be done without a time-base corrector. If a particular image from a 
videotape must be digitized, it is necessary that a time code is recorded together with 
the images either on the audio track or with the video signal itself. This time code is 
read by the computer and used to trigger the digitization of the image. 

Nowadays, video signals can also be recorded in analog form on an optical disc 
which can be written to only once (WORM technology). Such systems, as for example, 
the Sony LVR-5000 and LVR-6000, allow for the recording of single video frames as 
well as continuous sequences. The images can be played back in forward and backward 
direction at variable speed. Furthermore, random access to any image on the disc is 
possible within 0.5 s. All functions of the recorder can be controlled via a serial interface. 
Because of the fast random access, the large numbers of frames and the weariless read 
back, this new medium is also eminently suitable for image data bases. 

Most modern frame grabbers can process video signals according to both the Amer
ican RS-170 and the European CCIR norms with 30 and 25 frames/s, respectively. The 
most important parameters of the two norms are summarized in table B.l. An image 
row according to the RS-170 standard is shown in figure B.l. 
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Figure B.l: A section of the analog video signal according to the American RS-170 norm showing one 
row of the image with the horizontal synchronization signals. The European CCIR is very similar. 
Only the timing is slightly different (see table B.l}. 

Table B.2: Typical resolutions of digitized video images. 

number number Pixel clock aspect 
of rows of columns [MHz) ratio 

RS 170, old standard 512 480 10.0699 1.10 
RS 170 640 480 12.28 1.01 
RS 170 740 480 14.3181 0.87 
CCIR, old standard 
CCIR, square pixels 

Digitization 

512 
768 

512 10.00 
572 15.00 

1.48 
LOO 

Generally, the video signal is digitized with a resolution of 8 bits, i. e., 256 gray value 
levels at a rate of 10 million pixels per second. The resulting digitized image contains 
512 x 512 and 480 x 512 pixels in the European and American formats, respectively. 
For a long time, this has been a standard. Modern frame grabbers, however, are 
much more flexible. Thus the number of rows and columns and the pixel clock can be 
programmed in a wide range. Some typical resolutions are shown in table B.2. With 
the variable-scan acquisition modules (figures B.4a), it is also possible to digitize non
standardvideo signals, e. g., from electron microscopes, ultrasonic and thermal sensors, 
line scan cameras, and from high-resolution CCD-cameras such as the Kodak Videk 
Megaplus camera with more than 1000 x 1000 pixels. For practical applications, the 
following additional hints are important: 

From the 576 visible rows of the European CCIR signal only 512 are digitized in 
the standard digital video resolution with 512 x 512 pixels. Unfortunately, there is no 
standard using rows. Consequently, every frame grabher may select a different sector. 
Generally, the pixels are not squares but rectangles (see table B.2). This fact is very 
important for videometry and filter operations. Isotropie filters become non-isotropic. 
In recognition of the importance of square pixels, most modern frame grabbers can 
operate in a square pixel mode. 
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The digitization rate generally does not coincide with the rate at which the collected 
charges are read out from CCD sensors. Consequently, sensor elements (sels) and pixels 
(pels) are not identical. This may lead to vertically oriented disturbance patterns in 
the digitized images. The Variable Scan Acquisition Module of the Modular Vision 
Computer (figure B.4a) includes a pixel clock input which allows the sel and pel clock 
rates to be synchronized to avoid such disturbances. Pixel-synchronous digitization is 
also important for sub-pixel accurate position, displacement, and size measurements 
(sections 2.2.4 and 17.4.5). 

Standard video cameras work in the interlaced mode. This means that a frame 
is composed of two half frames which either contain the even or odd lines. These 
half frames or fields are scanned one after the other. Consequently, the two fields are 
illuminated one after the other with a time shift of half the time interval between two 
images. A single frame containing moving objects fiickers because it is composed of the 
two half images illuminated at different times. For image sequence analysis this means 
that we must work with half images. In this way, the temporal resolution is doubled at 
the cost of the vertical resolution of the images. 

Input LUT 

The digitized image is read into the frame buffer via an input look-up table (LUT). Most 
boards incorporate 8 or 16 such tables, which can be selected by registers. LUTs allow 
a fast implementation of homogeneaus point operations (sections 4.3.1-4.3.2) before the 
pixels are stored in the frame buffer. The LUTs can be accessed from the host either by 
hardware registers or by mapping the LUT memory into the address space of the PC. 
Writing to an LUT for 8-bit images which contains just 256 entrances is fast enough so 
that it can be performed interactively. 

With the help of another register, single bit planes in the frame buffer can be 
protected against overwriting by the digitized video signal. With the input LUT a 
real-time segmentation can be performed and the segmented image can be stored in 
only one bit plane by protecting all other bit planes. Then we can store a whole binary 
image sequence in the individual bit planes of the frame buffer. In this way, the image 
sequence of the particle traces shown in plate 4 has been produced. 

Digital Video Input 

Since the beginning of image processing, imaging sensors were locked to the video 
standard of 30 (25) frames/s and a limited spatial resolution of 480 (580) lines/frame. 
Such a standard was required in order to be able to view images on monitors and to 
record them to video tape. For digital image processing, however, severe disadvantages 
are linked to this standard since it has been developed for television broadcasting. One 
of the most disturbing features is the interlacing of a frame into even and odd fields. 
Another severe llmitation is, of course, that applications had to be adapted to the 
temporal and spatial resolution of video imagery. . 

For a long time, the only major deviation from the video standard were line sensors 
which found wide-spread usage in industrial applications. Today, we see the advent of 
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Table B.3: Specifications of various digital video cameras. 

Camera Sensor size Frame Resolution Pixel 
(Pixels) rate (1/s) (Bits) clock (MHz) 

DALSA CA-Dl-128 128 X 128 900 8 16 
DALSA CA-Dl-256 256 X 256 200 8 16 
Kodak Megaplus 1.4 1320 X 1035 6.9 8 10 
Kodak Megaplus 4.2 2029 X 2044 2.1 8 10 
Kodak XHF 1320 X 1035 30 10 2 X 20 
DALSA CA-D9-2048 2048 X 2048 15 8, 10 4 X 15 

cameras with digital output. Now there is no Ionger a restriction to frame rates and 
images sizes, as shown by the summary in table B.3. Of course, the rate at which 
pixels can be read out is still limited. Therefore, a tradeoff exists between spatial and 
temporal resolution. A similar tradeoff exists between the dynamics in brightness and 
pixel read-out frequency. Cameras are also available with resolutions of up to 16 bit. 
These cameras find applications in spectroscopy and photometrics. They can be used 
only with much lower pixel read-out frequencies. This limit will, however, be overcome 
in the future with multiple digital outputs. 

The benefits of digital cameras are significant. First, a much higher signal quality 
can be achieved since it is no Ionger required to transmit analog video signals from the 
camera to the frame buffer. Second, a pixel in the digital image really corresponds to a 
sensor element in the camera. Thus the image preserves the exact geometry of the sensor 
allowing for precise geometrical measurements. This ernerging field is called videometry 
in analogy to photometry. Third, sensors can be chosen that fit to the requirements of 
the application concerning spatial, temporal and irradiance resolution. Forth, digital 
cameras require a much simpler interface to computers. There is no restriction to the 
sensor size and frame rates within certain Iimits of transfer rates. Thus we should see 
an enormous diversification in imaging sensors in the near future. 

B.3 Frame Buffer 

The frame buffer is the central part of an image processing board. The digitized image 
is stored in the frame buffer. All image processing boards discussed here contain a 
frame buffer which can hold pixels with at least 8 bits (256 gray values). The frame 
buffer can hold 2 (PCVISIONplus) to 16 (Vista) full resolution 512 x 512 images. This 
corresponds to 0.5 to 4 Mbytes of memory. Modularsystems have the advantage that 
the frame buffer memory can be expanded to store long image sequences. 

Frame buffers show a complex inner structure which allows digitized images to be 
written and read out simultaneously. While a new pixel is written into a memory cell, 
the old contents are simultaneously read out. In this w11y, the display of images is 
delayed by one frame interval. The frame buffer also contains a dual-ported memory 
architecture. Newer frame buffer architectures, as for example in the Modular Vision 



B.4 Video Output 355 

Computer, feature independent timing for writing {image acquisition) and reading {dis
play) of pixels in memory. 

Besides the continuous and sequential access of the frame buffer for image display, 
the host can randomly access the frame buffer memory. Two concepts are used for host 
access. First, a selected part of the frame memory, generally 64 kbytes, is mapped into 
the address space of the PC. This part of the frame buffer can then be accessed by 
the host in the same way as any other PC memory. Second, the frame buffer can be 
accessed via hardware registers. Both methods allow a flexible addressing. After each 
read and write cycle, both row as weil as column numbers can be in- or decremented 
automatically. In this way, rows and columns can be read or written without any 
additional addressing operations. 

Frame buffers deeper than 8 bits are very helpful to overlay images with graphics, 
calibration grids, or segmentation and classification results. Furthermore, a 16-bit buffer 
can be used to store intermediate results or evaluated images. For many advanced 
filtering operations, such as the local orientation ( chapter 7), an accuracy of 8 bits is 
insufficient. The images shown in plates 9, 12 and 13 have been computed with 12-bit 
deep images. More advanced image processing boards allow a flexible use of the frame 
buffers for 8-, 16-, 24-, or 32-bit images. 

B.4 Video Output 

The video output part generates an analog video signal from the contents in the frame
buffer so that the image can be viewed on a monitor or stored on a video recording 
device. All image processing systems discussed here contain a three-channel video out
put part, one channel for each of the colors red, green, and blue. In this way color 
images can be generated even from gray value imagery. In a gray value frame buffer, 
the digitized gray value is output to all the channels simultaneously. Before the gray 
values are converted to an analog signal, they pass by an output L UT. Each color chan
nel contains its own LUT. If all three LUTs contain the same values, a gray value image 
is displayed. By programming the three color output LUTs with different tables, gray 
value images can be converted into pseudo color images {see also plate 7). In color 
image processing systems, each output channel can be connected to a different part 
of the frame buffer (see, for example, figure B.6a). In this way true color images, or 
more generally, multichannel images with 8 bits per channel, can be displayed. Like 
the input LUT, the output LUT can quickly be accessed by the host. This opens up 
the possibility of carrying out homogeneous point Operations on the images without 
modifying the contents of the frame buffer (see sections 4.3.1 and 4.3.2). 

The pan-, scroll- and zoom functions determine the part of the frame buffer which 
is accessed by the video in- and output part of the board. While the pan and scroll 
set the starting row and column, respectively, the zoom factor determines the size of 
the frame buffer. In the video output circuit, the image enlargement is performed by 
replication of pixels and scan lines. In the video input circuit, the zoom factor divides 
the digitization clock frequency and causes whole scan lines to be omitted in order to 
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reduce the size and resolution of the image to be digitized. The possible zoom factors 
depend on the hardware of the frame grabber. While the PCVISIONplus can zoom 
images only by a factor of two, other frame grabbers can zoom images by factors of 2, 
4, and 8 or set the horizontal and vertical zoom factors independently. 

Zoom, pan and scroll can also be used to digitize short image sequences and to 
play them back with adjustable speed. All image processing boards contain a register 
which allows the beginning of a new image (vertical blank signal) to be detected. The 
program waits for the next or several vertical blank signals and then sets the pan and 
scroll factors to the next free frame buffer area. On the Vista board with 4 Mbytes of 
frame buffer, a sequence of about 50 images with 256 x 256 pixels, or 200 images with 
128 x 128 pixels and 8 bits depth can be digitized and interactively be played back. 

B.5 Dedicated Image Processing Hardware 

So far, we have only discussed dedicated hardware to capture and display images. 
Basically all image processing still has to be performed on the PC. This also includes 
the overhead to transfer the image data from the frame buffer to the PC and back 
again. 

Dedicated processing hardware allows common image processing operations to be 
speeded up considerably. In this section, we will briefly describe the principle of par
allel processing using a pipelined video bus and the concept of area-of-interest scan
ning to speed up processing. Then, the most important processing elements including 
arithmetic-logical units, filter processors, and histogram and feature extractors will be 
discussed. 

B.5.1 Parallel Processing in the Video Pipeline 

All computational modules described in this section are connected to each other by 
several video busses. As an example of an modular image processing system with a video 
pipeline bus, the Modular Vision Computer will be discussed (figure B.6a). Digitized 
image data (3 x 8 bits) from the acquisition modules can either be stored directly into 
the frame buffers AO, Al, and Bl or enter the videopipelinevia the PBIN bus. Image 
data stored in the frame buffers can enter the pipeline via the video in bus (VB). 
Processed video data from the video pipeline can be stored in the frame buffers via the 
PBOUT bus. Cross-port switches (figure B.6) control in which order the video signals 
are piped through the video pipeline. Figure B.6b illustrates the various possibilities 
to connect the three computational modules on a CMC base board. Video data pathes 
can be splitted or merged again. Since several CMCs can be connected in series, this 
Ieads to a very flexible processing scheme. 

All computational modules in the video pipeline operate in parallel. After a fixed 
delay, the data processed in one computational module is clocked to the next module in 
the pipeline. In this way, the delays in all processing modules add up. This means that 
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- except for a initial delay - there is no additional overhead for the parallel operation 
and that the computational power of all modules in the pipeline adds up linearly. If one 
or only a few runs through the video pipeline is suflicient, the corresponding operation 
is performed in real time. However, if an application requires an operation which cannot 
be performed by one of the processing elements in the video pipeline, it becomes the 
bottleneck and slows down the overall performance significantly. 

B.5.2 Processing Windows: Area-of-Interest 

For display, the frame buffer is continuously scanned row by row. In this way the pixels 
are put on a video bus with a rate of typically 10 MHz (see table B.2). Thus real-time 
image processing can be performed by clocking the pixels through additional processing 
elements at this rate and then writing the processed data back to the frame buffer again. 
In this way only full-resolution images can be processed. However, it is often necessary 
to process only a small part of the image. Operations on image pyramids (chapter 8) 
are typical and important examples. In such cases, the processing element would only 
be active when pixels of the window are put onto the video bus and thus would be idle 
most of the time. 

In order to speed up operations on image sectors, some image processing systems 
can operate in a special mode called area-of-interest processing. In this mode, not 
the whole active frame buffer is scanned but only a small sector, the area-of-interest. 
Compared to the regular scanning mode, the processing time is reduced proportionally 
to the size of the window. Since also the clock rate during area-of-interest timing can be 
much faster than during the acquisition timing (for instance 40 MHz for the Modular 
Vision Computer (MVC) from Imaging Technology), processing faster than real time is 
possible. Therefore, even several processing steps can be performed by a computational 
module in series while still keeping up with the incoming video data. 

B.5.3 Arithmetic Pipeline Processors 

An arithmetic-logical unit (ALU), as it is integrated into the convolver logical unit 
(figure B.7a), is a basic computational module for image processing on the MVC. With 
this unit, logical and arithmetic Operations can be performed with two images. This 
includes image addition, subtraction, and multiplication, computation of the minimum 
and maximum gray values, and operations between an image and a constant. 

It is also possible to perform convolution Operations by combining the ALU functions 
with the pan and scroll functions which determine the spatial offset of the image output 
onto the video bus. First, we need to reserve apart of the frame buffer to hold the result 
of the convolution operation. Initially, this accumulation buffer is set to zero. Then we 
multiply the image in the ALU by the first coeflicient of the mask and add the result 
to the accumulator buffer. The pan and scroll function is used to apply a horizontal 
and vertical shift to the multiplied image which corresponds to the position of the filter 
coeflicient relative to the central pixel of the mask. After performing this operation with 
all non-zero coeflicients of the mask, the convolved image is divided by a corresponding 
factor. Division can be replaced by a shift operation, if the division factor is a power 
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of two. This is, for example, the case with binomial smoothing filters (section 6.1.2). 
The ALU makes the computation of convolution operations much faster. Convolution 
of a 512 x 512 image with a 5 X 5 binomial mask takes only 8 iterations (section 6.1.2). 

B.5.4 Filter processors 

The computation time for convolution operations can further be reduced using special 
convolution processors which include parallel arithmetic units. The convolver chip 
L64240 from LSI Logic, for example, can compute a convolution of an 8-bit image with 
an 8 x 8 mask (8-bit coefficients) in real time. This corresponds to a computational 
power of 640 million multiplications and 630 million additions per second. A similar 
convolver chip is integrated into the Convolver Logical Unit of the MVC (figure B.7a). 
This chip performs a 4 x 4 convolution with 8-bit image data and 8-bit kerne! coefficients 
with a clock rate of 40 MHz. With four iterations, 8 x 8 convolutions can be performed 
with an effective clock rate of 10 MHz. 

The morphology computational module (figure B. 7b) can perform rank value fil
teroperationssuch as median, minimum and maximum filtering (section 5.1.3). The 
module contains four 3 x 3 rank value filter elements that can work in parallel or in 
series. Each of this rank value filters outputs either the minimum, median, or maxi
mum value for grey value erosion, median, or dilation operation, respectively. After the 
rank-value filtering, two data streams can be fed into a arithmetic-logical unit and a 
16 x 16-bit lookup table. In this way, advanced morphological operations such as the 
top-hat openitor can be performed in one run through the module. 

Furthermore, a binary correlator is available for the MVC (figure B.7d). This mod
ule allows binary morphological Operations to be performed such as erosion and dila
tion (section 11.2) and binary cross-correlations (section 15.3.4) with mask sizes up to 
32 x 32 in real time using the 1024-tap Binary Data FIR Filter chip from LSI Logic. 

B.5.5 Histogram and Feature Extractors 

Computation of histograms can be performed in real time with another computational 
module, the histogram/feature extractor (figure B. 7c). The computed histogram is 
stored in a special buffer which can be accessed by the host. The module contains a 
second functional block that operates in parallel to the histogram extractor and that 
allows features to be extracted from an image in a flexible way. 

B.6 Programmahle Systems 

Although dedicated image processing hardware such as the filter processors shows im
pressive performance figures, they seldom reach the peak performance, lack flexibility 
and are difficult to program. In the initial times of PC-based image processing, how
ever, there was no alternative. The transfer of image data from the frame buffer to 
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the PC memory and back again was slow and the general purpose computers were not 
powerful enough for the many operations required for image processing. 

B.6.1 Frame Grabbers with Programmahle Processors 

Consequently, the integration of a programmable processor on the frame buffer seemed 
to be a valuable alternative. Since such a processor on the frame buffer can work in 
parallel to the PC, the overall performance is also enhanced considerably. 

An early example ofthis concept was the Vistaboard from Truevision (figure B.2b). 
This board includes the graphics processor TMS 34010 from Texas Instruments. This 
processor is a general purpose 32-bit processor which provides a powerful instruction 
set for pixel processing. By these instructions, arithmetic and logical operations can be 
performed with pixels from two windows. 

Equally important as the hardware are suitable software development tools. For 
the TMS 34010 based boards, extensive development tool kits are available. This 
includes an ANSI C cross-compiler, an assembler, a symbolic debugger, and utilities. 
Working with image data is much easier than on an IBM-compatible PC. In contrast 
to the maximum segment size of 64 kbytes, the TMS 34010 has a large linearly and 
bitwise addressable memory. The Vista board includes up to 4 Mbytes memory for 
image display, and additional 10Mbytes for programs and image data with the VMX 
extension board. Image data for intermediate results can dynamically be allocated. In 
addition, image data may be used with all C data types. Another important aspect is 
the extensive graphics library available for the TMS 34010. 

B.6.2 Frame Grabbers for Fast PC Bus Systems 

The advent of fast bus systems on PCs such as the VESA local bus and the PCI bus will 
transform PC-based image processing again since a critical performance gain is achieved. 
These bus systems are fast enough to transfer digitized image data in real-time to PC 
memory. Sustained transfer rates up to 80 Mbytes/s have been reported for the PCI 
bus. The ELTEC PC..EYE1 framegrabher (figure B.9) is a typical example for the new 
concept of frame buffers with master DMA image transfer. The incoming analog video 
signal is digitized with a rate of up to 15 Msamples/s into 8-bit digital video samples. 
The samples arebuffered in the direct memory access (DMA) controller and transferred 
via PCI hurst transfers to any preselected PC memory address. Thus, the CPU is 
offloaded from transferring images into main memory and no extra, more expensive 
video random access memory (VRAM) is required for the intermediate storage of images 
as with conventional frame buffers. Assuming a typical sustained PCI bandwidth of 50 
MB/s, the real-time imagetransferstill consumes only a fraction of the bandwidth and 
can be displayed in real time on fast graphics adaptors. Thus it is possible to process 
an image, while the next one is acquired simultaneously. 
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Table B.4: Benchmarks for typical image processing operations with the image processing software 
heurisko on the platforms as indicated. lf not noted otherwise, 512 x 512 float images are used. 

Computing time in seconds i486DX2 Pentium i860XP PowerMac 
66 MHz 90 MHz 50 MHz 8100/100 

Fast Fourier transform 4.0 1.1 0.47 1.5 
Horizontal derivation (edge detection) 0.28 0.09 0.10 0.08 

same with 16-bit integers 0.16 0.08 0.09 0.07 
Laplace operator 0.75 0.25 0.23 0.19 

same with 16-bit integers 0.49 0.24 0.28 0.22 
General 3 x 3 convolution 1.43 0.41 0.24 0.34 
General 5 x 5 convolution 3.64 1.00 0.50 0.80 

same with 16-bit integers 2.40 1.46 1.56 0.89 
5 x 5 binomial mask 1.09 0.41 0.30 0.37 

same with 16-bit integers 0.57 0.24 0.35 0.36 
3 x 3 gray value erosion 0.95 0.48 0.47 0.40 

same with 16-bit integers 0.64 0.32 0.51 0.31 
binary 3 x 3 erosion 0.035 0.019 0.028 0.017 
Gaussian pyramid 0.82 0.3 0.35 0.22 
Laplacean pyramid - 0.49 - 0.41 
Histogram 0.67 0.26 0.21 0.16 

same with 8-bit numbers 0.064 0.025 0.051 0.031 

B.6.3 Portable Software Versus Dedicated Hardware 

Modern PC architectures with fast PC bus systems as described in the previous section 
reduce the costs for image processing hardware considerably and thus will widen the 
usage of image processing for scientific and industrial applications. While the costs of 
even simple conventional frame grabbers often exceeded the price of a high-end PC, 
the prices of the first generation of fast bus frame grabbers have already dropped into 
the $400- $1000 rangein 1995. A framegrabher can now be reduced to a minimum 
of a video analog-digital converter and a DMA controller, as demonstrated with the 
ELTEC frame grabher (figure B.9). Image display can be handled with the largely 
expanded imaging abilities - including 24-bit true color display at high resolutions -
built into standard graphics adaptors and is already supported by the operating system 
of modern personal computers and workstations. 

This hardware development has another, equally important but often overlooked 
effect. It opens the way to portable image processing software. If all image processing 
and display is clone on a general purpose hardware, then the only hardware dependent 
part is the handling of image input with the frame buffer. This task can be performed 
by a simple driver. Allimage processing software can then be written in a portable way, 
e. g., in ANSI C. Porting to a new platform then requires only a recompilation of the 
code. It is expected that this development will Iead to an acceleration in the develop
ment and application of advanced image processing algorithms. Given the impressive 
performance of dedicated hardware as discussed in section B.5, the question remains 
how efficient and fast image processing can be performed on general purpose hardware. 
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First of all, it must be stressed that software development for dedicated hardware is 
much more difficult than for general purpose hardware. Dedicated hardware is in general 
also much less flexible. It is typically designed to run a specific type of algorithms. It 
might well happen that after the development cycle of the hardware more efficient 
algorithms are available but that they cannot be used because the hardware was not 
designed to run the modified algorithms. 

Computation times for typicallow-level image processing algorithms are summarized 
in table B.4 for different hardware platforms. The benchmarks have been computed with 
heurisko, a portable advanced tool kit and development platform for image processing 
(including image sequences and volumetric images) that has been developed by AEON 
Verlag & Studio in cooperation with the author1. 

From table B.4 it is obvious that in general, video-rate image processing is not yet 
possible with general purpose hardware. The performance figures are still impressive 
and show some interesting trends. First, integer arithmetics is no Ionger faster than 
floating-point arithmetics. For most of the operations shown in the table, floating-point 
arithmetics is even slightly faster than integer arithmetics. Second, the binary 3 x 3 
erosion is performed faster than real time (19ms for a 512 x 512 image). The more than 
10-fold performance gain as compared to 16-bit gray value erosion is caused by the fact 
that with 32-bit words 32 binary pixels can be processed in parallel. 

Third, it can be observed that the gain by efficient algorithms increases with the 
complexity of the operation. While a simple horizontal derivation (one subtraction) 
runs on a 90 Mhz Pentium processor only at about 2.8 million floating-point operations 
per second (MFLOPS), the general 5 x 5 convolution (25 multiplications, 24 additions) 
is much more efficient with 12.3 MFLOPS. Surprisingly, the computation of the Gaus
sian pyramid is even faster than the general 5 x 5 convolution. By the use of efficient 
algorithms, the 13 x 13 smoothing filter (169 multiplications and 168 additions for a di
rect computation) could be reduced to a few additions and multiplications. This means 
that the Gaussian pyramid is apparently computed with a rate of about 375 MFLOPS. 
This performance would be required by a "stupid" dedicated hardware that performs 
the 13 x 13 convolution directly in order to compute the Gaussian pyramid with the 
same speed. 

This simple example illuminates that the focus for future progress in computational 
speed for image processing might very well be more on software than on hardware. 

1For further information on heurisko contact AEON Verlag & Studio, Fraunhoferstr. 51B, D-63454 
Hanau, Germany, Compuserve 100326,3156 (access from Internet: 100326.3156@compuserve.com). 
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Figure B.2: a} Block diagram of the PCVISIONplus framegrabher from lmaging Technology; b} block 
diagram of the ATVista board from Truevision. 
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Figure B.4: Block diagrams of acquisition modules for the Modular Vision Computer (MVC) from 
Imaging Technology: a) the Variable Scan Acquisition Module (AM-VS); b) the Color Acquisition 
Module (AM-CLR). 
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Figure B.5: Block diagram of acquision modules for the Modular Vision Computer (MVC) from 
Imaging Technology: the Digital Acquisition Module (AM-DIG). 
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Figure B.6: a) Video pipeline as implemented in the Modular Vision Computer (MVC) from Imaging 
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a) 1110 ln1 

c) 

Figure B. 7: Computational modules for the Modular Vision Computer (MVC) from Imaging Tech
nology: a) Convolver Logical Unit (CM-CLU}; b} Morphology Processor (CM-MMP}; c) His
togram/Feature Extractor (CM-HF}; d} Binary Correlator (CM-BC}. 
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Color Plates 



a 

b 

Color plate 1: Legend see following page 



Color plate 2: (section 1.4) Examples for scientific applications of image processing: a and 
b Visualization of the penetration of a gas tracer into the water surface for studying the gas 
exchange between atmosphere and ocean. The images show a view onto the water surface 
from above. The greenish intensity corresponds to the momentary thickness of the mass 
boundary layer. c Time series of the vertical concentration profile of a dissolved trace gas 
in the vicinity of the water surface made visible by a fluorescent dye. d OH radical 
concentration in an experimental engine madevisible by laser-induced fluorescence in a thin 
sheet 

Color plate 1: (section 1.2.1) a Chlorophyll distribution in the surface water of the Pacific 
at the coast of Southern California as derived from a Coastal Zone Color Scanner image 
in the green-blue spectral range. b Temperature of the ocean surface water calculated from a 
NOA 6 satellite image taken in the far infrared from the same area at the same time 



a 

c 

e 

Color plate 3: (section 2.1.1) Demonstration of the complexity of illumination with computer 
generated images: a objects shown in the colors of their surfaces without any consideration 
of illumination; b shading of planar diffusively reflecting facets; c linear interpolation of the 
colors of the facets (Gouraud shading); d Phong shading; e texture mapping; f shadows 
and mirror images ( environment mapping); images rendered with Caligari Broadcast from 
Octree Software, N. Y. 

b 

d 

f 



a 

b 

Color plate 4: (section 2.2.8) Imageanalysis of the turbulent flow directly below 
a wavy water surface. The flow is madevisible by small particles: a superposition 
of 12 images; the traces from the different images of the sequence are coded in 
different colors; b single frame of the particle traces; from Wierzimok [1990] 



Color plate 5: (section 1.4) Two-dimensional wave number spectra computed from wave 
slope images (see figure 1.7 in section 1.4). Shown is the spectral density (coded in color for 
better recognition) as a function of the logarithm of the wave number and the propagation 
direction (log-polar coordinates). Each spectrum is averaged over 120 images. Unpublished 
data of the author from measurements in the wind/wave facility of the IMST, University 
of Marseille, at a fetch of 5 m and wind speeds as indicated 



a 

b 

Color plate 6: (section 2.2.9 and 4.3.2) Stereo images: a computer generated 
stereo irnage; b use of stereo images to investigate the roughness (small-scale 
waves) on the ocean surface: the specular reflexes indicate zero-crossings of 
the slope of the surface while the height of the surface can be computed from 
displacement of the reflexes between the two images. The four images were 
taken within 2 s and show significant variation of the wave height. Measure
ments from S. Waas and the author at Scripps Pier, La Jolla, California 
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Color plate 7: (section 4.3.2) LUT operations to transform gray value irnages into 
pseudo-color images. The corresponding LUTs are shown at the left: a rainbow colors; 
b marking of too dark and bright gray values in blue and red, respectively; c color 

representation of image segmentation: the segmented objects are shown green, the 

background red 



a 

c 

e 

Color plate 8: (section 7.3.4) Tensor method to compute local orientation applied to a test 
image with concentric rings of a gray value amplitude a. The wave number increases with 
the distance from the center. Zero-mean normal noise with a variance of (Jn has been added. 
Left: original image; right: color coded orientation image as explained in section 7.1.2: 
a, b a = 127, (Jn = 0; c, d a = 64, (Jn = 20; e, f a = 32, (Jn = 32 

b 

d 

f 



a 

c 

e 

Color plate 9: (section 7.3.4) Examples of orientation images: left original, right color-coded 
orientation image: a, b building ofHeidelberg University; c, d tree rings; e, ftwo orientation 
images computed from images in which the wind-driven flow below a water surface is made 
visible by particle traces (see plate 4 and section 2.2.8) 

b 

d 

f 



a 

c 

e f g 

Color plate 10: (section 7.3.4) Examples for application of local orientation: a--d hierarchical 
image processing with vectorial orientation images: a a sector of a calfskin, in which a 
circular sector has been rotated; b orientation image; c averaged orientation image; d edges 
of the averaged orientation image; ~adaptive image enhancement: e original fingerprint; 
f average orientation image; g enhanced image after two iterations; from Prof. Dr. Granlund, 
University of Linköping, Sweden 

b 

d 



a 

b 

Color plate 11: (section 9.3.2) Detection of different scales by computing the local wave 
number: a original image; ball regions in which the local wave number lies above a certain 
threshold are marked red; from Prof. Dr. Granlund, University of Linköping, Sweden 



a 

c 

e 

Color plate 12: (section 9.3.1) Usage of local orientation for texture analysis: left, original; 
right, orientation image: a, b dog fur; c, d cloth; e, f basketwork 

b 

d 

f 



b 

d 

Color plate 13: (section 9.3.3) Combined scale and orientation analysis with the Laplace 
pyramid: a a sector from a cloth; b-e orientation images on the Ievels 0 to 3 of the Laplace 
pyramid 

c 

e 
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Color plate 15: (section 13.2.3) Focus series of cell nuclei imagestaken with confocallaser 
scanning microscopy. The upper 9 images are xy cross sections, the lower 6 xz cross sections. 
The numbers either indicate the depth z or the y position in pixels; from Dr. Kett and 
Prof. Dr. Komitowski, German Cancer Research Center, Heidelberg 



b 

d 

a 

Color plate 16: (section 1.4 and 17.3.2) Analysis of an image sequence with water surface 
waves using Gabor filters: a single image of the sequence; superposition of two Gabor-filtered 
images with center wavelength of 4. 7 and 1.2 cm in wind direction: b amplitude of the cosine 
filter; c energy; same but with an xt cross section: d amplitude of the cosine filter; e energy. 
The phase and group velocities of the waves can be interred from the slope of the lines of 
constant gray values in the xt images. From Riemer [1991] 

c 

e 




