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Chapter 1

Introduction

When I teach introductory programming, I tell students that they are learning a
foreign language: the language understood by the computer. The purpose of pro-
gramming is to translate your ideas about how to solve a problem into a language
that the computer understands so that it can follow your instructions.

You are a Java programmer. You are already fluent in the Java programming lan-
guage. But now you find that you need to learn a new programming language,
namely the language called “C.” This is just like learning a second (human) lan-
guage. As I’m sure you know, some human languages are more similar than oth-
ers. If you know Spanish, you can learn French or Italian relatively easily. Many
of the constructions are the same, although there are some important differences
in the details. On the other hand, if you know English, it’s of relatively little use
to you in learning Chinese or Japanese—they don’t even use the same characters!

Luckily for you, Java and C are closely related. In fact, Java was developed by
starting with C and adding features designed to help programmers develop com-
plex programs more quickly and with fewer errors. Thus you will have no problem
understanding the high-level structure of a C program. There are important differ-
ences that we will point out, starting in the next sections, but it really is an easy
conceptual transition.
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8 CHAPTER 1. INTRODUCTION

Keep in mind as you learn C that you are stepping back in the history of program-
ming. C was developed in the early 1970’s when computers were much simpler
(and less powerful) than today. Java appeared in the mid-1990’s and has been
evolving and expanding ever since. A fundamental thing to realize is that C pro-
vides much less support to the programmer. It’s much easier to make mistakes
and often harder to figure out how to fix them.

So why would anyone use C? There are a couple of reasons. First, because as
you will see in Section 3, a C program runs in a much smaller memory footprint.
This makes C the choice for embedded systems and other environments where
memory is at a premium. Second, because C programs run with less support, they
may also run faster. Although higher-level languages like Java and C# have gotten
faster, it is still probably the case that tightly coded C is as fast as you can get
without writing assembly code, which is not only much harder but by definition
not portable across platforms. If speed is important (and for many, possibly even
most, programs, it is not), C is often the choice. A third reason to use C is that it
is kind of the universal interchange language. Many other languages interoperate
with C, allowing you to connect components written in different languages into
one application using C. Finally, because C is more minimalist than many of its
successors, it forces the programmer to confront some illuminating design and
implementation questions and really think about what their code is doing.

Please note that this guide is not a definitive manual for the C programming lan-
guage. For that, you should get a copy of The C Programming Language, Second
Edition by Brian Kernighan and Dennis Ritchie. I will refer to this as “K&R” in
the rest of this document. Not only is it the definitive specification of the language,
it’s one of the clearest, most useful books you will ever read. You will learn things
about programming and programming languages that you can apply to any lan-
guage, including Java. Knowing C will make you a better Java programmer, as
well as having an additional very useful tool in your programming toolbox.



Chapter 2

Overview of Java and C

Let’s start with a quick overview of the similarities and differences between Java
and C.

2.1 What’s The Same?

Since Java is derived from C, you will find many things that are familiar:

• Values, types (more or less), literals, expressions

• Variables (more or less)

• Conditionals: if, switch

• Iteration: while, for, do-while, but not for-in-collection (“colon”
syntax)

• Call-return (methods in Java, functions in C): parameters/arguments, return
values

• Arrays (with one big difference)

• Primitive and reference types

• Typecasts

• Libraries extend the core language (although the mechanisms differ some-
what)

9



10 CHAPTER 2. OVERVIEW OF JAVA AND C

2.2 What’s Different?

On the other hand, C differs from Java in some important ways. This section gives
you a quick heads-up on the most important of these.

• No classes or objects: C is not an object-oriented language, although it has
structured types (struct and union) and there are ways of doing things
like inheritance, abstraction, and composition. C also has a mechanism for
extending its type system (typedef).

• Arrays are simpler: there is no bounds checking (your program just dies if
you access a bad index), and arrays don’t even know their own size!

• Strings are much more limited, although the C standard library helps.

• No collections (lists, hashtables, etc.), exceptions, or generics.

• No memory management: You must explicitly allocate (malloc) and re-
lease (free) memory to use dynamic data structures like lists, trees, and
so on. C does almost nothing to prevent you from messing up the memory
used by your program.

• Pointer arithmetic: You can, and often have to, do arithmetic on addresses
of items in memory (called pointers). C allows you to change the contents
of memory almost arbitrarily. This is powerful but also dangerous magic.

Bottom line: When you program in C you are closer to the machine. This gives
you more flexibility but less protection. The next section explains this in more
detail by comparing the development and execution models of Java and C.



Chapter 3

Development and Execution

3.1 Development and Execution in Java and in
C

Figure 3.1 (page 12) shows the basic components involving in developing and
executing a Java program. You should already be familiar with this process, so I
will describe it only briefly.

• You write your program (source code) as a text file using the Java program-
ming language. The name of your source file ends in “.java”.

• You compile your source code using the javac command (“Java com-
piler”) to create a Java class file containing “bytecode” (.class file).

• Bytecode does not use the native instruction set of any real computer. In-
stead, it uses an abstract instruction set designed for an abstract computer
called the “Java Virtual Machine” or “JVM.”

• To run your program, you run the java command, which simulates the
JVM running on your actual computer. You tell it to load and run your class
file (bytecode), which results in your code being executed.

• That is, you have a “real” program, java, running on your computer, and
it is simulating the execution of the bytecode of your program on the “not-
real” JVM. This is slower than running native code directly on the computer,
but also safer and better for development.

11
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• Java programs can use other classes and libraries of other classes (jars) to
provide additional functionality. In fact, most of Java is library classes.

• To partially compensate for the slowdown due to interpreting bytecode, Java
includes a feature called a “Just In Time” or “JIT” compiler. This part of
the java runtime system detects pieces of Java code that are executed fre-
quently and compiles them into the real instruction set of the host computer
(native code). This is faster than interpreted bytecode, but usually not quite
as fast a native code.

• Finally, note that the Java compiler, javac, is itself a Java program, written
in Java! That is, running javac means running java (the Java runtime)
and telling it to run the class for the Java compiler. I’ll let you think about
how the first Java compiler was written. . .

By comparison, Figure 3.2 shows a similar component diagram for development
and execution in C. I’ll point out the main differences briefly.

• In C, you write your program as a text file using the C programming lan-
guage. The name of your source file ends in “.c”.

• You then compile your code into processor-specific object code (“.o”) us-
ing the cc command (for “C compiler”).

• The C compiler actually consists of two phases. The first is a “pre-processing”
phase which can transform the text of your program in various useful ways.
Then the compiler phase translates the resulting C program text into native
object code. Although it is technically possible to run just one or the other
phase of the C compiler, you will never do that in practice.

• Before your code can be run, it needs to be “linked” with any libraries that
it uses, including the C runtime. The result is an executable file containing
native object code.

• You can run your executable directly from the command line. If it crashes,
your program dies. Sometimes this happens without even a message unless
you are using a debugger. In the not-so-good old days, you might even crash
the entire machine.

• A compiled C program runs at full speed on the processor for which it was
compiled.
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In general, the key difference between Java and C is that in C you are running
much closer to the machine. When computers were less powerful and had less
memory, it was vital to squeeze out every drop of performance in order to do
even simple computing tasks. The history of programming languages is a contin-
ual evolution from low-level object code and assembly language to higher-level
languages like Fortran, Algol, Lisp, Smalltalk, Java, Javascript, and all the other
modern languages. C sits somewhere in the middle, not as low-level as assembly
language, but without too many of the powerful (but possibly slow) features of
higher-level languages. Interestingly, C was actually predated by some higher-
level languages. And some of the earliest languages had features that have only
recently been rediscovered.

But as a Java programmer coming over to C, your development and execution
process should be quite familiar. You write your code as one or more text files.
You compile your code until the compiler is happy with it. There are IDEs for C
as for Java should you want to use them (see next section). There are libraries that
make your life easier, and you can develop your own libraries and reusable code.
Then you run your program and see if it works. If you need to debug it, there are
debugging tools for C as for Java. In the case of C, these can catch fatal errors and
allow you to post-mortem the execution rather than simply crashing.

3.2 Setting Up Your Development Environment

Development environments, whether for Java or for C, are a deeply religious topic.
You can opt to use an “Integrated Development Environment” (IDE), like Eclipse
(cross-platform), Visual Studio (Windows), or XCode (Mac). Or you can work
like the pioneers did, using separate tools that they could combine in ingenious
ways. For simple projects, an IDE is fine. For complicated projects that include
some amount of automated compilation or testing, it helps to know how things
work under the hood so that you can build your own tools.

For tips on setting up Eclipse for C development, see my document Using Eclipse
for C Programming.

Most Computer Science students should become comfortable working from the
terminal (command shell). If that’s not yet you, then this is your chance to learn
something new. Here are some things to look for:

http://www.cs.rochester.edu/u/ferguson/csc/173/eclipse-for-c.pdf
http://www.cs.rochester.edu/u/ferguson/csc/173/eclipse-for-c.pdf
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• You’ll need an editor for writing your C programs: vim, Emacs, NotePad,
TextEdit, BBEdit, . . . Text editors are another subject on which program-
mers have deeply-held religious views.

• You’ll need a C compiler and linker. The standard open-source tool is the
GNU Project’s gcc suite.

– On Linux distributions, this is standard or can be easily installed using
a package manager.

– On Macs, you need the free Apple Developer Tools, which include and
extend the GNU tools. Apple originally used gcc, but now prefers
a compiler suite called clang/llvm (although the name gcc still
works).

– On Windows, it is possible to get gcc working, but it’s not for the
faint of heart. Microsoft expects its developers to use Visual Studio.
Check out the MinGW or Cygwin projects if you want an alternative.

• You’ll probably want a debugger. I’m a big believer in print statements for
debugging, but sometimes you have to look at a program as it breaks. The
GNU debugger is gdb, for llvm the debugger is lldb, and on Windows
it’s Visual Studio or gdb.

• For anything but the simplest projects, you will need some kind of build
system to automate compilation and testing. The classic tool is make, and
it is still frequently used for C development. More modern (but also way
more complicated) tools include ant and gradle, both of which are more
commonly used for Java development than for C.

Finally, whether you use an IDE or a separate toolchain, you should learn to
love some kind of version control system. The original tools on UNIX were
SCCS (“Source Code Control System”) and CVS (“Concurrent Versions Sys-
tem”). These were replaced by Subversion (svn), which is still very popular.
More modern version control systems include Git, Mercurial (hg), and Bazaar
(bzr). Note that you don’t have to store your files “in the cloud” (e.g., on GitHub)
to benefit from a version control system. You can use it locally to track changes,
make branches, and revert to a prior state if you break your code five minutes
before it’s due. Of course, you should also be sure to backup your files, but you
already know that. . .

http://mingw.org/
https://www.cygwin.com/
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/*
* File: hello.c

*/
#include <stdio.h>

int main(int argc, char *argv[]) {
printf("Hello world!\n");

}

Figure 3.3: “Hello World” Program in C

3.3 Writing Your First C Program

Figure 3.3 shows the classic “Hello World” program which, by the way, first ap-
peared to my knowledge in The C Programming Language. Let’s break it down
by comparing it to the Java equivalent with which I’m sure you’re already familiar
(otherwise check out “Hello World” Program at Wikipedia).

First the comment at the top: block comment just like in Java.

Next: #include: Semantically, this is like an import statement in Java, mak-
ing some library functionality available to your program. In C, it is implemented
quite differently, as described more fully in Section 10. In this case, we are in-
cluding the definitions of the C “Standard Input/Output” (stdio) library so that
we can use the printf function to produce output later in the program.

Now, notice that there is no “main class.” Indeed, there are no classes at all in C.
Instead, functions are defined at the toplevel of the file, as can be done in Python,
and are visible to any following code.

The next block of code is the definition of the function main. Just like in Java,
each program needs a main function and this is the function that is called when
the program starts (Java inherited this from C, as a matter of fact).

The function definition should look familar. It says that main is a function that
returns an int (Java uses a static void method) and takes two parameters.
In Java you get an array of Strings passed to your program containing any
arguments specified on the command-line. In C, as you’ll see in Section 4.6,
arrays don’t know their length, so the first parameter is the number of arguments

https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
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(traditionally named argc for “argument count”). Strings are defined as char*
(“pointer to char”, see Section 4.7), and the parameter argv (for “argument
vector”) is an array of these. So this looks a bit different but it means exactly the
same thing as in Java.

And finally, the one-line body of the main function in curly brackets. Instead
of calling System.out.println (or format), we are calling the function
printf, which is part of the C Standard input/output (I/O) library and defined in
stdio.h. But the function call itself is the same in C as in Java: the name of the
function, followed by comma-separated values for the parameters in parentheses.

There is only one argument in this call to printf: a string literal containing the
text we want to print. String literals use double quotes just like Java. The “\n”
at end of the string might be new to you. It indicates a “newline” character, since
printf in C behaves like print in Java and does not print a newline the way
println does. There is no println in C. Furthermore, printf in C can
take additional parameters, and substitutes them for placeholders in the first string
parameter, just like Java’s format methods. You will use this often since, unlike
Java, there is no string concatenation (+ for strings) and there are no toString
methods.

And finally, a semi-colon at the end of every statement, just like Java.

That’s the whole program. Just like Java, the program exits (stops running) when
the main function is done. That is, just like Java unless you’re using multithread-
ing either explicitly or implicitly, as with Swing graphics. And those things are
not so easy to do in C.

This C program should be understandable to any Java programmer. The family
resemblance between the languages is very strong. Yes there are some important
differences, but you are not starting from scratch.

3.4 Compiling Your First C Program

So you’ve written your first C program, now you want to compile and run it. If
you’re using an IDE, it may have already done part of this for you. Different
IDEs work differently. Some compile constantly in the background to warn you
of errors; with others you need to tell it to compile. Either way, you edit your
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source code until it compiles successfully.

If you are not using an IDE, you need to be comfortable working with a terminal
window and command interpreter (or “shell”). To compile your C program, you
need to invoke the C compiler and tell it to compile your file. The simplest form
of this is something like the following, which you would type at your command
shell prompt:

cc hello.c

This assumes that your source file is named “hello.c” and that it is in the
“current working directory” of the terminal (shell). It also assumes that your C
compiler is named “cc”, which is traditional. You might need to try gcc or
clang or whatever is right for your platform and development environment.

When you run the C compiler, you will either get error messages or perhaps no
output. If there is no output, you should be left with an executable program file in
the current working directory. For historical reasons, this file is called “a.out”
regardless of what the source file was named. That isn’t usually so helpful, so you
can tell the C compiler to call the executable something else with the “-o” option:

cc -o hello hello.c

Now your executable will be called “hello” (on Windows it’s traditional to name
executables with names that end in “.exe”, but not on Unix-like platforms). You
should see your new file if you type ls on Unix platforms, dir on Windows, or
find it in a window showing the directory (folder) with your source file in it.

Now you need to run your program. With an IDE, this usually means some kind of
“Go” button. Without an IDE, you need to tell your terminal command interpreter
(shell) to run the newly-created executable file. For reasons that don’t concern
us now, you probably can’t just type its name the way you did the cc command.
Instead you probably have to give the pathname of the executable file. The easiest
way to do this is:

./hello

The “dot” (“.”) means “the current working directory, whatever it is,” so this
pathname refers to the file named “hello” in the current working directory.
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Either way, your program should run and you should see its output printed either
to the console of your IDE or to your terminal. Congratulations! You are now a C
programmer.

The rest of this document builds on this basic program. You can use it as a tem-
plate for trying the code examples. Try different variations and find out what
works and what doesn’t. There’s only one way to learn a foreign language, and
that’s to get out there and use it to communicate. For learning programming lan-
guages, this means getting onto a computer and writing programs.
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Chapter 4

Basic Expressions and
Statements

Let’s dive a bit deeper into the C programming language, emphasizing similarities
to and differences from Java. As always, you’ll want to consult K&R for the final
word on C.

As you already know from your prior programming experience:

• Comments are a crucial part of any program.

• All computer programs compute values.

• Values come in several types.

• Values can be written as literals (“literally this value”) or as expressions that
use operators to combine values into new values.

Java’s comments, values, types, and expressions are derived from C’s, so they are
very similar. Let’s take a look at each of these in a bit more detail.

4.1 Comments

The syntax for comments in Java was taken from that for C. Text enclosed between
/* and */ is ignored by the compiler. Modern C compilers also understand the
// syntax that was introduced in C++ and is also used in Java.

21
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4.2 Primitive Types

Table 4.1 shows the primitive types in both Java and C. As you can see, all the
basic numeric types in Java are inherited from C.

Java C

int int

short short

long long

float float

double double

char char (see text)

byte N/A

boolean N/A

Table 4.1: Comparison of Java and C primitive types

Historically these types were specified with somewhat less precision than in Java.
For example, int was whatever was most natural for a given machine, and could
be 16 bits, 32 bits, or something else. I’m not going to dwell on these details. If
you need to know how many bits are in an int, you can lookup how to do that.

Two of Java’s primitive types do not exist in C: byte and boolean. That’s ok.
Most people don’t use byte anyway. In C, use an int (or a short if you’re
really concerned about memory usage) and just don’t assign it a value less than
-128 or greater than 127. I told you C gave you less protection than Java.

Now booleans are genuinely useful, but if you think about it, they simply rep-
resent a true-false, yes-no, 0-1 value. So again, in C, use an int. C uses the
convention that 0 means “false” and any non-zero value means “true.” Boolean
variables and functions that return Boolean values are traditionally declared int.
The stdbool library provides support for more explicit booleans in modern C
compilers.
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In Java, a char represents a 16-bit Unicode character (a “code point”). In C, a
char is an 8-bit byte representing an ASCII character. The difference matters
if you’re working with modern text sources which can include foreign characters,
accents, math symbols, and, yes, emoji. There is some library support for handling
unicode in C, but it is not a strength of the language. On the other hand, a C
char is exactly a byte, so you could use it for that if you wanted (there are
some signed/unsigned math considerations, and C has unsigned numeric types,
including unsigned char).

Literals for primitive types are just like in Java. Numeric representations for inte-
ger and floating point numbers. Character (char) literals in single-quotes. String
literals enclosed in double-quotes. Inside a character or string literal, use back-
slash for escapes, including \’, \", and \n.

4.3 Producing Output

We’ve already seen the printf method to produce output in our “Hello World”
program. In that example, we passed in the string that we wanted to print. This
makes it seem like the Java method println from the java.io.PrintStream
class. In fact though, it’s more like the Java method format which uses the class
java.util.Formatter. Python 2 (and 3) has the “%” operator, and Python
3 has the function format. All of these are derived from C’s printf.

The printf function always takes at least one parameter. The first argument to
printf is called the format string because it controls the format of the output.
Any character in the format string other than a percent sign (“%”) or backslash
(“\”) is simply printed as is.

We’ve already seen that the backslash (“\”) is used to introduce characters that
can’t be easily typed in a string, such as the newline \n. A backslash in front of
a percent sign “escapes” its special meaning (described next), meaning that \%
prints as just “%”.

An unescaped percent sign indicates that the value of the next parameter to the
function call is to be converted to text and printed at that point in the output.
Unlike in Java, there is no automatic conversion of values to strings. Instead, the
character following the percent sign says what type of thing it is. For example
“%d” indicates an integer (“decimal”) number, “%f” a floating-point number, and
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Arithmetic +, -, *, /, %

Comparison ==, !=, <, <=, >, >=

Logical !, &&, ||

Increment/Decrement ++, -- (pre- and post-fix)

Bitwise &, |, ˆ, <<, >>, ˜

Figure 4.1: Basic C operators

“%s” a string. We will see examples of these when we look at expressions and
variables.

Another thing we will see shortly is that there is no string concatention in C. If
you are used to writing println statements using “+”, you will need to break
that habit and get used to specifying a format string and the arguments that fill the
% specifiers.

FYI: Wikipedia has an extensive description of printf format strings.

4.4 Operators and Expressions

Most of the operators in Java were also derived from C, so they will be familiar
to you. The basic C operators are shown in Figure 4.1. Note that Java took
“==” for “equals” comparison from C. Pascal (which came after C), used “:=”
for assigment and plain “=” for “equals”, which actually makes more sense, but
unfortunately never caught on.

Precedence rules (order of operations) for the operators are as in Java, and paren-
theses can be used to group sub-expressions.

As noted above regarding the Java boolean type, comparison and logical oper-
ators in C use the assumption that 0 means “false” and any non-zero value means
“true.” You can check the examples shown in Figure 4.2 in your own program.

https://en.wikipedia.org/wiki/Printf_format_string
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printf("%d\n", 3 < 2); // 0
printf("%d\n", 2 < 3); // 1
printf("%d\n", 1 && 0); // 0
printf("%d\n", 1 || 0); // 1
printf("%d\n", 0 && 123); // 0
printf("%d\n", 0 || 123); // 1
printf("%d\n", 1 < 2 && 2 < 3); // 1

Figure 4.2: Comparison and logical operators in C and the zero/non-zero conven-
tion.

There is one important difference regarding Java and C operators: there is no
string concatenation using the + operator. Strings are not primitive types in C or
in Java. We discuss this further in Section 4.7.

4.5 Variables and Assigment

As in Java, variables in C must be declared before they are used. A variable
declaration includes declaring the type of the variable:

int x;
float f;

Historically, variables could only be declared in certain contexts, such as at the
start of a function. This has gradually been relaxed and is now very similar to
Java.

Also as in Java, in C you assign a value to a variable in an assignment statement
using “=” (single equals sign):

x = 1;
f = 3.14159;

Of course the value assigned to the variable need not be a literal, as above, but can
be any expression that computes a value of the appropriate type. There are also
the shortcut assignment statements +=, -=, and so on, just like in Java.
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Finally, again as in Java, in C you may combine declaration and initialization in
one statement:

int x = 1;
float f = 3.14159;

The value must be “compile-time evaluable” meaning either a literal or an expres-
sion that uses only values known at compile-time (including literals).

In Java, you can declare a variable final, meaning that its value cannot change
after it has been initialized. This allows the Java compiler to optimize the use of
the variable and it will flag as an error any attempt to change a final variable. In
C, you can declare a variable const (for “constant”). This has the same meaning,
and the C compiler will detect any attempt to change a const variable. Unfortu-
nately, it cannot prevent you from doing it in all cases. K&R (p. 40) says that “the
result is implementation-dependent if an attempt is made to change a const.” So
don’t do that.

4.6 Arrays

Java took its array concept from C, so both the syntax and the semantics of ar-
rays are very similar in the two languages, although there are a couple of key
differences.

In both languages, square brackets ([]) indicate arrays. In Java, you declare an
array variable by adding [] to a type:

int[] numbers;
char[] letters;

Then, separately or as the initialization of the variable, you allocate the storage
for an array by calling new on a type and specifying the size in square brackets:

numbers = new int[3];
letters = new char[5];
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Declaration and allocation: two separate concepts, two separate steps in Java,
although you can do them in one statement.

In C, you put the square brackets after the variable name and you have to know
the size of the array at compile-time:

int numbers[3];
char letters[5];

This not only declares the variable to be of an array type, but also allocates the
space to store the given number of elements. If you need to create an array whose
size you don’t know at compile-time, or if you don’t want to allocate it at compile-
time for some other reason, you will need to allocate it dynamically, as discussed
in Section 8.

In both languages, an array can be initialized by providing the necessary number
of compile-time evaluable expressions in curly brackets. In C, this looks like:

int numbers[3] = { 1, 2, 3 };
char letters[5] = { ’a’, ’b’, ’c’, ’d’, ’z’ };

As in Java, the C compiler is smart enough to figure out the size of the array for
you if you provide an initializer, so these would normally be written as:

int numbers[] = { 1, 2, 3 };
char letters[] = { ’a’, ’b’, ’c’, ’d’, ’z’ };

If not explicitly initialized, the value of array elements is typically 0 (but you
probably shouldn’t count on that).

To specify an array type for a function parameter (see Section 6), in both lan-
guages, you can use the array type without its size:

int main(int argc, char* argv[]) {
...

}

Once you have an array variable, you get or set its elements using the same square-
bracket syntax as Java (the first element of an array is at index 0 in both lan-
guages):
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printf("%d\n", numbers[0]); // 1
printf("%c\n", letters[1]); // b
numbers[1] = 99; // { 1, 99, 3 }
numbers[2] += 1; // { 1, 99, 4 }

C also has multi-dimensional arrays. The details are a bit different from Java—in
C they are rectangular arrays of the element type, whereas in Java they are arrays
of references to other arrays. In both languages you use multiple indexes to access
the elements (e.g., a[i][j]).

Like in Java, arrays in C are reference types. That is, the value of an array variable
is a reference to where the element values are stored. In fact, as we will see, the
value of an array variable in C is the address in memory of the first element in the
array, with the rest of the elements occupying the subsequent contiguous memory
locations. Arrays and other reference types are often called pointers in C since
they “point” to the data in memory.

Like in Java, the length of an array cannot be changed after it has been created.
But unlike in Java, there is no way to get the length of an array. Seriously. Either
you keep track of how many elements are in it, or you mark the last entry in some
way. This is one of the most common sources of bugs, crashes, and security holes
in C programs, which is why Java looks after it for you (at some cost, of course).

Finally, there is no built-in support for printing the contents of arrays. You will
need to write a function (Section 6) that takes an array (and its length or other way
of knowing which element is last) and iterates over the elements (Section 5.2)
printing them out. This is a good simple exercise in C programming. Spoiler: It
will look almost identical to its Java equivalent.

4.7 Strings

In Java, strings (sequences of characters) are full-featured objects, with construc-
tors and methods and runtime checking and all that. Java also provides special
support for strings through the string literal syntax and the overloading of + to
mean string concatention.

In C, strings are simply arrays of chars. That’s it. The following allocates a
string that can hold 32 characters:



4.7. STRINGS 29

char name[32];

You can use the string literal syntax to initialize a character array, and if you do,
the C compiler is smart enough to figure out the length for itself:

char name[] = "George";

In Java, strings are immutable (cannot be changed), although you can create new
strings from them or pieces of them. In C, you can get and set individual elements
of character arrays, so they are most definitely mutable. Whether this is a good
thing or not depends on the application.

Since there is no way to get the length of an array from the array, it also isn’t
possible to get the length of a string from the character array, or to know when
you’ve reached the end of the string (the last character in the array). By convention
(that is, since the dawn of C), the last character in a string is indicated by the
value 0 (the ASCII character NUL). This was nice because it meant that a newly-
allocated but uninitialized character array was treated as the empty string because
its first element is 0 (indeed, all its elements are zero). This convention means
that a character array holding a string must always be one element longer than the
number of characters in the string, in order to hold the NUL character at the end.

Many of the methods of Java’s String class are provided by functions in the C
standard library (see Section 10). Almost all of these methods rely on the NUL-
terminated string convention. Furthermore, when a character array is initialized
from a string literal, the compiler allocates one element more than the number of
characters in the literal and puts a NUL (0) in there to terminate the string. If you
construct strings and manipulate character arrays manually, you need to look after
preserving the NUL at the end of the string.

Messing with strings and messing up the NUL at the end of them is the cause
of many bugs and security holes in C programs which, again, is why Java does
significantly more for you with strings (at some cost).
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Chapter 5

Control Flow

So far we’ve seen enough to write basic straight-line programs in C. Next let’s
look at control statements. The good news is that they’re almost exactly the same
as in Java.

5.1 Conditional Statements

The basic conditional statement is the if statement:

if (x != 0) {
// Do something...

}

As in Java, the condition must be in parentheses and the “then” clause (nested
statement or block) is executed if the condition is true (that is, evaluates to a
non-zero value; see Section 4.4). Because there is no true boolean type, only
the zero/non-zero convention, you will often see conditionals like the following,
which tests whether the variable x is non-zero:

if (x) {
// Do something...

}

Also as in Java, the “then” clause can be a single statement or a compound state-
ment (block) in curly brackets. In both languages, I highly recommend using
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curly brackets for all control statements. Lookup the “dangling else” problem if
you don’t understand why this is good practice.

Multi-conditional statements in C are identical to Java’s:

if (x < 0) {
// Do something when x is negative

} else if (x > 0) {
// Do something else when x is positive

} else {
// Otherwise do something when x is 0

}

Java also inherited its multi-way conditional switch statement from C, so they
are identical:

switch (i) {
case 0: // Do something

break;
case 1: // Do something

break;
// ....
default:

// Do something
}

In C, execution falls through into subsequent cases unless prevented by an explicit
break statement. This is because the switch statement was originally designed
to mimic a common assembly language programming idiom. Unfortunately, Java
kept this behavior, but at least you’re already used to it (Swift has finally broken
with the past on this point).

5.2 Iteration Statements

Java’s iteration statements are derived from C’s. The while statement, including
the do-while form, is identical (with C using the zero/non-zero convention to
represent false and true in the condition).

https://en.wikipedia.org/wiki/Dangling_else
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while (x != 0) { // or perhaps ‘‘while (x)’’
// Do something

}

The “original” form of the for loop is identical in C and in Java:

for (int i=0; i < 10; i++) {
// Do something

}

Historically you couldn’t declare the variable inside the for statement, you had
to do it at the start of the enclosing block. But now life is easier, and identical to
Java, although of course you can declare the loop variable earlier if you need to.

C does not provide any kind of built-in Collection classes (see below). Thus
the “colon” form of the for loop (“for element in collection”) is not available.
To iterate over the elements of an array, use the array index as loop variable.
Iterating over the elements of a list or other dynamic collection is part of the fun
of programming in C (see Section 8.7).

5.3 Other Control Flow Statements

C has break and continue statments for use in iteration constructs. These
behave the same as in Java, terminating the loop or moving immediately to the
next iteration of the loop, respectively.

C’s return statement is identical to Java’s and used to return a value from a
function (see Section 6).

C also provides an arbitrary branching construct, leftover from the early days of
assembly language and other “unstructured” programming. Here’s what K&R has
to say about it:

“C provides the infinitely-abusable goto statement, and labels to
branch to. Formally, the goto is never necessary, and in practice
it is almost always easy to write code without it.” (p. 65)
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You will almost certainly not need to use goto statements in your own programs,
and you are unlikely to even come across them in code written since the 1990’s.
Nonetheless, the history of “structured” programming and Edsger Dijkstra’s fa-
mous letter to Communications of the ACM entitled “Go-to statement considered
harmful” make good reading for a student of Computer Science.

https://doi.org/10.1145/362929.362947
https://doi.org/10.1145/362929.362947


Chapter 6

Functions

All but the earliest programming languages had the idea of subroutines: reusable
pieces of code that do something or compute something (or both). In Java, sub-
routines are called methods and are always part of a class. In C, they are called
functions. In Python, you can have both standalone functions and methods in
classes. In C there are only standalone functions.

I assume that you understand how functions and methods work: calling a function
and returning from it (“call-return” flow of control), passing values to functions
(parameter binding), and returning values from functions.

As we saw in the “Hello World” program definition of the main function, a func-
tion definition in C is very similar to a method definition in Java: return type, func-
tion name, parameters in parentheses separated by commas, body of the function
in a block. C supports void functions that don’t return a value, just like Java.
Here’s another example of a function definition. This one doubles and returns the
integer value that it is given:

int times2(int x) {
return x * 2;

}
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6.1 Function Parameters

As in Java, parameters are passed by value. Consider the following code:

int double_it(int x) {
x = 2 * x;
return x;

}

int main(int argc, char* argv[]) {
int i = 10;
int j = double_it(i);
printf("i=%d, j=%d\n", i, j);

}

The value of i is copied to the parameter x when function double it is called.
Thus the assignment to x within the function does not affect the value of i. You
should already be comfortable with this from Java.

C does provide a form of parameter passing that allows a function to change vari-
ables passed in as parameters (“pass-by-reference”, called an inout parameter in
Swift). In C, this is better thought of as passing a pointer (reference) to the original
variable, so we will describe it further in Section 8 when we discuss pointers.

Historically only primitive values (including pointers) could be passed to func-
tions. More modern C compilers also allow structured types to be passed although
it is much more common to pass a pointer to the structured object.

Function parameters may be marked const, meaning that the function promises
not to change them. This is only really relevant for reference types (pointers).
And anyway, K&R says it isn’t always enforced. But you will often see this done
in library functions to make clear to programmers which things may or may not
be changed by the function call.
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6.2 Function Declarations

Once you start writing in functions in C, you may be surprised to discover that
they must be declared before they can be used. In Java, the order that methods
are defined in a class does not matter. The Java compiler first scans your class
definition for any method definitions. It then makes a second pass to compile the
bodies of the methods. Since it already knows about all the methods in the class,
it can compile a call to method B in some other method A even if A is defined
earlier in the class.

In C, no such luck. If you need to define a function after its first use, you must
use a forward declaration. This declaration tells the compiler what arguments the
function takes and what it returns—in other words, everything the compiler needs
to know to make sure that you’re using the function corrrectly. Here’s an example:

int f(int x);
...
void g(int x, int y) {

int z = f(y);
...

}
...
int f(int x) {

...
}

The first line is a forward declaration of the function f which says that it takes a
single int parameter and returns an int value. We can then use (call) f in the
body of function g even though f hasn’t been defined. And then at some point
elsewhere in the program, we need to define f and its definition must match its
declaration or the compiler will complain. Try it.

Forward declarations are also used for declaring functions defined in other files or
libraries. See Section 10 for more on that.
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Chapter 7

Structured Types

We’ve said several times already that C does not have classes and objects. Instead,
there are two ways of defining structured types—types that are composed of other
types. Of these, one is a thousand times more common that the other, but the other
is interesting from a historical perspective.

By far the most common form of structured type is called a “structure” or struct:

struct point {
int x;
int y;

};

This means that every instance of the type struct point includes two mem-
bers: x and y, both ints in this example. A struct is therefore like the part of
a Java class definition that specifies the instance variables for the class.

Incidentally, the name point is not itself a type. Rather, it is called a “tag,” which
combines with the keyword struct to specify the type, as in struct point.
This is discussed further in Section 9.

As with Java instance variables, you access the members of a struct using “dot”
syntax:

struct point origin;
origin.x = 0;
origin.y = 0;
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Structured types can be composed just like in Java:

struct line {
struct point start;
struct point end;

}

As with Java, you can chain the accessors using dot syntax:

struct line line1;
line1.start.x = 1;
line1.start.y = 2;
line1.end.x = 3;
line1.end.y = 4;

Note that there are no “getters” and “setters” since there are no classes, although
it is possible to define functions to do these things; see Section 8.

In C, structs are the building blocks of data structures, just like classes are in
Java. Any time you think “this should be a class,” use a struct. We’ll see more
of how structs work like classes when we look at dynamic data structures in
Section 8.7.

The much less common C structured type is called a union:

union value {
int i;
float f;

};

The difference is that the members of a union share the same memory. That is,
in our example, allocating a union value allocates enough memory for either
an int or a float, whichever is bigger. The choice of which member to access
determines how the value (the bits) stored in the union is interpreted:

union value v;
v.i = 123; // Set v to bits of integer 123
printf("%f\n", v.f); // Interpret bits of 123 as float



41

There are some unions used in common Unix system libraries, and they can be
used to implement some features of object-oriented programming. But you will
rarely need to use them yourself outside of low-level systems programming.
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Chapter 8

Memory Management

With functions and structured types in hand, it’s time to deal with one of the few
really significant differences between C and Java. This is the question of how C
programs manage the memory that they use to store values. This includes refer-
ence types, also known as “pointers,” and how you use these to develop complex,
dynamic data structures. There are several aspects of this, all intertwined, and I
will do my best to spell them out for you. But be warned: this is where you will
need to spend time becoming familar with C’s practices and idioms.

8.1 Variables, Addresses, and Pointers

Let’s start at the beginning. You already know that a variable is a name associated
with a piece of memory somewhere in your program’s total memory space. As-
signing a value to a variable copies that value to the place in memory associated
with the variable. Using the value of variable retrieves the value from the piece
of memory. In fact, named variables were developed to free programmers from
needing to keep track of all the chunks of memory their programs were using to
store values.

In Java, you cannot do anything to a variable other than get or set its value. The
details of storage in memory are completely hidden from you. In C, however, you
can retrieve the address of the location in memory where the variable is stored.
This is called a “pointer.” If the variable is, say, an int, then the type of the
address is “pointer to int”, written “int*” (and sometimes pronounced “int
pointer”).
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You use the “&” (ampersand) or “address-of” operator to get the address of a
variable. For example:

int i = 123;
int* ip = &i;

Here the first variable is an int, the second one is a pointer to an int. By the
way, you can write int* as the type, which is more readable, or do it the K&R
way, with the * on the variable name separated by whitespace (as in “int *ip”).

When the C compiler compiles the first line of this code, it produces machine in-
structions to find and use an int-sized chunk of memory to store the value of the
variable i (more on this below). It also produces code to store the representation
of 123 as an int in that chunk of memory.

For the second line, the C compiler produces code to find and use a chunk of
memory suitable for holding the address of a chunk of memory. Exactly how big
this is depends on the platform, but 32 and now 64 bits (four and eight bytes,
respectively) are common. The initialization code for initializing the variable ip
(“i pointer”) copies the address of the memory chunk storing i into the memory
chunk storing ip. Figure 8.1 illustrates this situation. Note that the value of the
pointer variable (1108) is the address in memory of the original variable.

Now that we can get a pointer to a variable, what can we do with it? The main
operations on pointers are getting and setting the value “pointed to,” meaning
the value stored at the address given by the value of the pointer variable. This is
called dereferencing the pointer. A pointer variable is a reference to another value;
dereferencing the pointer gets you that other value.

The dereferencing operator in C is the same “*” (asterisk) character used to indi-
cate pointer types. This can get confusing, but you just have to read carefully and
keep all the “*”s straight. For example:

int i = 123;
int* ip = &i;
printf("%d, %d\n", i, *ip);

The printf statement will print two values. The first value is the integer value
of the variable i. You know that it will be 123. The second is the integer value
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Program Memory

1136
1132
1128
1124
1120
1116
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1100

Address

int i = 123;

int* ip = &i;

123

1108

Program Code

Figure 8.1: Variable and pointer in memory

resulting from deferencing the int pointer ip, written *ip. Since we set the
value of the pointer ip to be the address of i, this will also be 123. The *
operator on a variable being used in an expression (an “rvalue”) dereferences the
pointer and returns the pointed-to value.

Now add the following line and print again:

*ip = 987;
printf("%d, %d\n", i, *ip);

The * operator on a variable being assigned to (an “lvalue”) says assign not to the
pointer variable itself, but to the location pointed to by the pointer. Since ip is the
address of i, this puts 987 into the memory locations storing the value of i. Thus
it changes the value of i without assigning to that variable directly! Both values
will print as 987.
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There are many legitimate uses of pointers, which is why they are part of the
language. We’ll see examples of these uses shortly. But clearly pointers are po-
tentially very dangerous since they let you change memory in non-obvious ways.
If the pointer ip had somehow been reassigned to point to somewhere other than
the location of i, then assigning a new value to *ip would not change the value
of i. This would probably be a mistake given the variables’ names, but the C
compiler can’t tell and so can’t help you avoid it.

8.2 Passing Parameters by Reference

In Section 6, we described how parameters are passed by value into functions.
But what if you want to pass a variable to a function and allow the function to
change the value of the variable? You should be able to figure how to do this
using pointers.

Suppose we want to write a function that takes an integer variable as parameter. It
first tests whether the variable is greater than or equal to zero. If it is, the function
should decrement the value of the variable and return true. But if the variable
is less than or equal to zero already, it should do nothing and return false. This
is a classic example of a function that wants to return more than one value. In
this case, the two values are the value of the counter being decremented and the
boolean result of whether or not it was decremented.

Think about how you would do this, then look at my code:

int test_and_dec(int* ip) {
if (*ip >= 0) {

*ip -= 1;
return 1;

} else {
return 0;

}
}

The key is that we define the parameter ip to be of type int* rather than int.
To access the value, we can deference the pointer, but we can also change the
value of the variable by storing into the dereferenced pointer.
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Somewhere else in our program (perhaps in main), we can use this function as
follows:

int i = 123;
...
if (test_and_dec(&i)) {

// i is now one less than before, possibly 0
} else {

// i was already <= 0
}

The address of the int variable i matches the type of the int* function param-
eter ip. When the function deferences the pointer and decrements it, this changes
the value pointed to, namely the value of i. And this change (called a side-effect)
is separate from the value returned by the function.

Another example of using pass-by-reference parameters is C’s scanf function,
used to read input from the terminal. Like printf, scanf takes a format (or
control) string that in this case specifies how to read the input, followed by a series
of parameters. For printf, the additional parameters are generally variables
whose values are printed. For scanf, they need to be references to variables so
that scanf can set their values as it reads and parses the input. For example:

int i;
float f;
char name[50];
scanf("%d %f %s", &i, &f, name);

The control string tells scanf to read an integer (%d), a floating-point value (%f),
and an array of characters (%s), each separated by whitespace. Since ints and
floats are primitive types, we must pass a reference to them. As we will see
in the next section, arrays are reference types, so we can pass the array variable
name directly and scanf will change the contents of the array rather than the
value of the variable itself.

There is a lot more one could say about scanf. For example, it will read charac-
ters up to a newline when reading a %s value. But what if there are more than 50
characters (or whatever the length of the array is)? The answer is a “buffer over-
flow” and the source of many dangerous and pernicious bugs. It is ok for simple,
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non-critical input. But real programs that do serious input parsing generally write
their own code using more primitive functions.

We will see further examples of passing parameters by reference when we look at
dynamic data structures and pointers to structured types.

8.3 Memory Allocation

Now let’s look at how C uses pointers for dynamic memory allocation where you
don’t know at compile-time exactly what memory you will need. Classic exam-
ples of this are dynamic data structures like lists, trees, and other “collections,” as
well as objects in object-oriented languages like Java. We’ll get to those shortly.
But first, we need to understand a bit more about memory allocation in general.

In C, as in Java (although you don’t often think about it in Java), there are three
ways for your program to allocate memory to store values:

1. Automatic: This is the easiest to understand. When you define a local vari-
able or function parameter (which is effectively a local variable), the com-
piler arranges for the necessary memory to be allocated and initialized when
the enclosing scope is entered.

2. Static: In C, memory for static variables is allocated once when the program
starts. This is similar to class variables in Java, which is why Java uses the
static keyword borrowed from C. In C, all global variables are static in
term of memory allocation, and other variables can be explicitly marked
static if needed (this is fairly rare and often indicates a bad design).

3. Dynamic: Both automatic and static variables are defined at the time the
program is compiled. If you don’t know until run-time that you need to
store something, or what or how many you need to store, then you need
to use dynamic allocation to allocate memory on the fly. This is also called
“allocating from the heap,” as opposed to “allocating on the stack,” which is
used for automatic variables where the memory is part of the “stack frames”
that are pushed and popped as functions are called and return.

Most of the rest of this section is concerned with dynamic memory allocation.
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It is worth making one note about the different allocation classes and the relation-
ship to pointers. The lifetime of a static variable is the lifetime of the program.
So it is always safe to take its address and use it as a pointer. The lifetime of an
automatic variable, on the other hand, is the enclosing scope (typically a block or
function definition). When an automatic variable goes out of scope, the memory
it uses is reclaimed by the memory system. If you have a pointer to an automatic
variable, you may inadvertently dereference it after it is no longer valid. This will
cause a nasty crash if you’re lucky, or it may not crash but will just use whatever
bits happen to be at that address now. Yowza! Dynamically-allocated memory has
to be managed explicitly by the programmer, as we shall see next.

8.4 Dynamic Memory Allocation in Java

Before we look at dynamic memory allocation in C, let’s look at how it works
in Java. In Java, if you want to create a new instance of a class, you use new to
invoke the class’ constructor:

Person p;
...
p = new Person("Alan", "Turing");

You should know by now that doing this first allocates a chunk of memory of a
size suitable for storing a Person, as determined by its class definition. That
chunk of memory is passed to the class constructor along with any arguments,
and the constructor is responsible for initializing the newly-allocated chunk of
memory (which is why it is called init in some languages, such as Smalltalk,
Objective-C, and Swift).

In Java, the variable p contains a reference to the object, or if you think about
it, the “address” of the chunk of memory storing the Person instance. I put
“address” in scare quotes because it may not be exactly the in-memory address
since Java runs in a virtual machine environment (see Section 3), but it means the
same thing. This is why we say that, in Java, classes define reference types.

Finally, in Java, when there are no more active references to an object, the chunk
of memory containing the object is returned to the system for reuse. This is called
garbage collection. Simple cases are easy for the Java system to handle. In the
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example above, if we never assign the value of p to any other variable, then when
p goes out of scope there can be no other references to the Person instance so
it can be garbage-collected. But what if you assign the value to another variable
with a different scope? Or what if you return it as the value of a method? Tricky.
But Java looks after it for you, at some cost.1

8.5 Dynamic Memory Allocation in C

In C, you have all the same pieces but you have to look after almost everything
by yourself. Sorry. But as a Java programmer, you don’t need to be intimidated.
Everything you already know about dynamic data structures still applies, you just
have to spell things out somewhat painfully. And you can appreciate why lan-
guages like C++ and Java were developed to spare programmers all that spelling
out over and over again.

For starters, in C, there are no classes so there are no constructors. Instead there
is a single library function, malloc, for memory allocation. You give it a size in
bytes, and it returns a pointer to a chunk of memory of that size. For example:

#include <stdlib.h>
...
void* p = malloc(100);

Note that malloc returns a value of type void*. This is C’s somewhat strange
way of saying “pointer to unknown type.” After all, it doesn’t know what you plan
to do with that chunk of memory.

If malloc fails, usually because your program’s memory space is exhausted, it
returns the special value NULL. Like an OutOfMemory execption in Java, there

1In fact, adding garbage collection to Java was one of the most dramatic design decisions made
by the original Java designers. Other languages, like Lisp, had had garbage collection for decades,
but it was still considered too expensive for “real” code. Java’s design decision emphasized that the
true cost of almost all software is in the development time, not the run time, and garbage collection
makes the developer’s job much, much easier (at some runtime cost). Apple’s Objective-C and
Swift languages use something called “Automatic Reference Counting,” which is less powerful
but also less expensive than true garbage collection. Cleaning up allocated memory remains a
challenge for large, long-running platforms.
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is usually not much you can do about this situation. For simple programs, it
almost always implies a programming error and terminating the program is the
only reasonable thing to do. For complex, long-running software, you might need
to be more careful. Either way you should always test that the return value of
malloc is not NULL, although I will not do this in my examples to save space.

But if malloc doesn’t return NULL, then we have a pointer to a chunk of bytes.
What can we do with it? The answer is: not much. The C compiler will not let
you dereference a void pointer because it doesn’t know what type is on the other
end of the pointer.

The solution is that you can typecast (or just “cast”) the pointer to a different type.
As in Java, a cast is you telling the compiler “I know what type this thing is—trust
me.” In Java, casts are almost never necessary and usually indicate lazy program-
ming and poor design decisions. But in C with dynamic memory allocation, they
are always necessary. For example:

void* p = malloc(100);
int* ip = (int*)p; // <- cast is here

*ip = 98765;
printf("%d\n", *ip);

Here we declare a pointer to int and initialize it with the address of our chunk
of memory, which is the value of the variable p. To satisfy the compiler’s type
checking, we need to cast the value of p, which is a void*, to an int*. Once
we’ve done that, we can dereference our int pointer and store an int value
at that location in memory. When we dereference and retrieve the value at the
location stored in ip, it is an int.

Typically the two steps, allocation and casting, are done together in one very com-
mon idiom:

int* ip = (int*)malloc(100);

You should confirm that this behaves the same as the first two lines of the previous
program.

Now you may have noticed something a bit funny with my example. I allocated
100 bytes of memory, and then used it to store an int. But ints are generally
four or eight bytes these days. What gives?
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Well, in one sense nothing gives. You asked for 100 bytes and malloc gave them
to you. If you only want to use four or eight bytes of it, the processor and the C
runtime don’t care.

While this is true, it’s not really ok to be deliberately wasteful and furthermore
it’s bad programming practice. If you want to allocate an int dynamically, your
code should make it clear that that’s what’s happening. So how do we know how
many bytes we need to store an int? It turns out that C has a built-in operator for
just this purpose:

int* ip = (int*)malloc(sizeof(int));

The sizeof operator takes a type and returns the number of bytes required to
store a value of that type. Just what we need. The C compiler is happy and our
code is nice and clear. We can allocate memory to store any type of value and get
a properly-typed pointer to access it. You will use this idiom often.

Now, the memory available to your program is finite. Just as with garbage collec-
tion in Java, it makes sense to return memory to the system when you are done
with it. Unfortunately, in C it is all up to you to determine when a chunk of mem-
ory is no longer needed. And when it is, you call the standard library function
free and hand it the pointer to the chunk you want to return:

int* ip = (int*)malloc(sizeof(int));
...
free(ip);

Note that the value of the variable ip is not changed (it is passed by value into
free after all). Yes, the system has made note that the chunk of memory at that
address is now available for reuse, but the value of the variable ip is still the
address of the chunk. If you try to deference the pointer after freeing it, one of
three things will happen:

1. Your program will crash with some kind of memory error; or

2. The dereference may find a value, but it isn’t the value you expected since
the chunk of memory has been reused by a subsequent call to malloc; or

3. Nothing funny will happen and you will happily get the value you expected
to find on the other end of the pointer.
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Assuming that you were really done with the chunk of memory, the first alternative
is in fact best. Your program has a bug and you need to fix it. The second situation
typically happens when the pointer has also been stored in some other variable
with a longer lifetime, and the code that uses that variable is not aware that it has
been freed. The third situation may happen if you access the pointer very soon
after freeing it, and in particular before your program allocates any more memory
(including in library functions, which may allocate memory to do their job).

To help avoid these so-called “dangling pointer” bugs, set the value of the pointer
to NULL immediately after freeing it.

int* ip = (int*)malloc(sizeof(int));
...
free(ip);
ip = NULL;

Attempting to dereference a NULL pointer will cause a crash (usually a “segmen-
tation violation,” SIGSEGV, or a “bus error,” SIGBUS). This is your cue that your
program needs fixing. This technique certainly does not prevent all problems with
using freed memory, but it can be generalized to more complex situations where
pointers are shared within a program.

8.6 Dynamic Arrays

Now that we can allocate and free memory, let’s look at the relationship between
pointers and arrays in C. This is crucial to understanding how strings work, as
well as more generally how C handles memory management.

We already saw in Section 4.6 that in Java, you allocate the storage for an array
by calling new on an array type:

numbers = new int[3];
letters = new char[5];

You can do this any time in your program, not just when a variable is first initial-
ized as part of its declaration. Thus, for example, it’s easy to read an integer from
the user or from a file and then allocate an array of that size.
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In C, you use a variant of malloc called calloc to allocate a chunk of memory
suitable for storing some number of elements of a given size contiguously:

int num_numbers, num_letters;
...
int* numbers = (int*)calloc(num_numbers, sizeof(int));
char* letters = (char*)calloc(num_letters, sizeof(char));

We’ve used the typecast and sizeof idiom just like for malloc.

But wait a minute. Here we have the type int*, but previously we said that
an array of ints had type int[]. The fact is that, in C, the value of an array
variable is the address of its first element. Thus every int[] variable is a int*
variable. By and large, you can use an array-of-type variable anywhere that you
can use a pointer-to-type variable, and vice-versa (there are some restrictions).

So for example, given the above code, you can do the following to access the
elements of the array just like our array variable examples:

numbers[0] = 99;
letters[0] = ’x’;
...
printf("%d\n", numbers[0]);
printf("%c\n", letters[0]);

You can also pass an array variable as value of a pointer parameter, and vice-versa:

int foo(int* numbers) {
return numbers[0];

}

char bar(char letters[]) {
return letters[0];

}

int main(int argc, char* argv[]) {
int numbers[] = { 1, 2, 3 };
char* letters = (char*)calloc(5, sizeof(char));
letters[0] = ’x’; // ...
foo(numbers);
bar(letters);

}
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One last thing: strings and arrays of strings. We already know that, in C, strings
are simply arrays of chars. You can allocate a string dynamically just like any
array:

char *str = (char*)calloc(length, sizeof(char));

This explains why we said at the very outset that the “string” type was char* in
C. And remember that when you allocate strings dynamically, it is up to you to
ensure that your string ends with a NUL (value zero) character.

If a char* is a string, then what’s the type of an array of strings? Well, it’s
an array, each of whose elements is a char*. Since arrays are themselves just
pointers, an array of strings is type char**. That is, it’s a pointer to pointer to
char, or pointer to string. To allocate an array of strings dynamically, you have
to allocate the array, and then the individual strings that are the contents of the
array:

char **s_array = (char**)calloc(array_len, sizeof(char*));
for (int i=0; i < length; i++) {

s_array[i] = (char*)calloc(this_str_len, sizeof(char));
}

This is a very common idiom, and in fact you need to do this for any dynamically-
allocated array containing elements of a reference (non-primitive) type, not just
arrays of strings. Don’t forget that you eventually need to free all these dy-
namically allocated strings, not just the main array. Of course this is true for
dynamically allocated arrays of any type of non-primitive element.

This “pointer-to-pointer” interpretation explains why you will often see the main
function declared as:

int main(int argc, char **argv)

This is equivalent to using char* argv[], although less clear in my opinion.

My recommendation is that you use the [] form when dealing with true arrays,
and save the * form for general dynamically-allocated objects, as we’ll see next.
The exception is strings, which are almost always referred to as char*. It’s all
just bits and bytes in memory anyway. . .
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8.7 Dynamic Data Structures

We’re now comfortable with the general idea of pointers, of dereferencing pointers
to get and set the pointed-to value, and of arrays as more or less synonymous with
pointers to continguously-allocated sets of elements. Let’s look at dynamically
allocating structured types, which is as close as you get in C to creating objects.

Suppose that we have the definition of a structured type representing points in two
dimensional space from before:

struct point {
int x;
int y;

};

To dynamically allocate an instance of this structure, we just use the standard
malloc idiom,2 only with the type struct point:

struct point* p = (struct point*)malloc(sizeof(struct point));

To access the members of our newly allocated structure, we need to dereference
the pointer to get to the struct and then pick out the member. You might try the
following:

*p.x = 1;

*p.y = 99;

Unfortunately, because of the precedence of the dereference (*) and member se-
lection (.) operators, you will get a compiler error. You can fix it with some
parentheses:

2If this idiom seems like repetitive boilerplate for allocating structured objects, you would be
right. Now you know why C++ was created (and before that, people used C preprocessor macros
for this, which you can check out).

Also, be careful not to write sizeof(struct point *). That will allocate only enough
space for a pointer (probably four or eight bytes), but tell the compiler that it is a pointer to a struct,
which is probably larger. This mistake can be very tricky to track down.
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(*p).x = 1;
(*p).y = 99;

First dereference the variable. Then, with the value you have there (which is the
struct itself), select the x or ymember. This is a bit unwieldy and so incredibly
common that there is a special syntax for it in C:

p->x = 1;
p->y = 99;

It means exactly what it says: follow the pointer which is the value of the pointer
variable p, and then access the appropriate member from the pointed-to structure.

Now, what about our struct line example from before, which used two struct
points as its members?

struct line {
struct point start;
struct point end;

}

If we use our standard idiom, we will get a pointer to a struct line:

struct line* line1 = (struct line*)malloc(sizeof(struct line));

Each instance of a struct line contains within it, that is, within the block of
memory allocated for it, the memory for two struct point instances. So to
access the members of the points, we must first derefence the pointer and then
chain the member accessors:

line1->start.x = 667;
line1->start.y = 668;
line2->start.x = -123;
line2->start.y = 0;

This situation is illustrated in Figure 8.2.

Or we could change our definition of a struct line so that rather than having
struct points as members, it has pointers to struct points as members:
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struct line {
struct point *start;
struct point *end;

}

And then, in order to allocate a struct line, we have to also allocate the two
struct points and save them in the struct line:

struct line* line1 = (struct line*)malloc(sizeof(struct line));
line1->start = (struct point*)malloc(sizeof(struct point));
line1->end = (struct point*)malloc(sizeof(struct point));

Why would you do this? Well, perhaps the points are really the important things,
for example in a graphical drawing program. The lines are defined in terms of the
points, but if a point changes location, all the lines that include that point ought to
change also. If there’s only one instance of the point and all the lines that include
it refer to that instance, then this is easy. If each line has its own instances of its
points, then it’s probably harder. Of course you’d have the same design issue if
you were using Java, so let’s get back to C.

Now that a struct line stores references to struct points, we need to
chain through the pointers to access the members of the struct points:

line1->start->x = 667;
line1->start->y = 668;
line2->start->x = -123;
line2->start->y = 0;

Figure 8.3 illustrates the contents of memory after this code has run. You should
be able to understand why the contents of memory are what they are and how to
follow the pointers to the various elements of the data structure.

Don’t forget that you need to free the reference type members of a dynamically
allocated struct before you free the struct itself:

free(line1->start);
free(line1->end);
free(line1);

You can use references to structured types to implement getters and getters in C.
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For example:

int point_get_x(struct point* p) {
return p->x;

}

void point_set_x(struct point* p, int x) {
p->x = x;

}

The pointer itself, p, is passed by value, so its value cannot be changed in the func-
tion. However by dereferencing the pointer the function can change the members
of the pointed-to struct. Very neat.

You can’t (easily) make the members of a struct private or protected like in
Java, but you can use functions like we’ve just seen to clarify your code. Note that
you probably need to include the type of structure in the name of the function.
Why? Because you may well have several structures with a member named x but
in C you can only have one function named get x and one named set x.

Finally, you can define structured types that contain members that are references
(pointers) to that same type. Just like in Java, these recursive types are used in
many common data structures including lists and trees. For example, here’s an
example of simple linked list of integers with three elements:

struct node {
int value;
struct node* next;

};

struct node* head = (struct node*)malloc(sizeof(struct node));
head->value = 0;
head->next = (struct node*)malloc(sizeof(struct node));
head->next->value = 99;
head->next->next = (struct node*)malloc(sizeof(struct node));
head->next->next->value = -13;
head->next->next->next = NULL;

The memory layout for this data structure is illustrated in Figure 8.4.
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Traversing a dynamic data structure like this can be done quite elegantly in C, as
in Java:

for (struct node *p=head; p != NULL; p=p->next) {
printf("%d\n", p->value);

}

You could use similar structures and pointer traversal code to implement doubly-
linked lists, trees, graphs, and so on.

In summary, creating dynamic data structures in C is no harder than creating them
in Java once you master the basic idioms that we’ve described in this section.
Freeing them, however, is a bit more challenging, and of course you don’t have to
do that in Java since the garbage collector will do it for you (at some cost).

8.8 Function Pointers

Thus far we have seen pointers to data: chunks of memory allocated on the stack
or from the heap. C is interesting in that it also allows you to have pointers to
functions, which are executable code, not data. This allows you to save references
to functions in variables and pass them as parameters to functions. C was not the
first language to support these features, and certainly it was a common assem-
bly language idiom. But it is powerful and you will see it quite often in more
sophisticated code, so it is worth understanding.

In C, although a function is not a variable, you can get a pointer to a function by
using the “address-of” (&) operator on a function name just like you get a pointer
to a variable by using & on a variable. And in fact, since a function name that is
not followed by parentheses and arguments is not a function call, the bare function
name can be used without the & operator.

For example, consider the following simple function that doubles and returns the
value of its one int parameter:

int times2(int x) {
return x * 2;

}
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The name times2 (or the expression &times2) can be used to get a pointer to
this function and assign it to a variable. The type of such a pointer is “pointer to a
function that takes one int parameter and returns an int.” This is written as:

int (*fp)(int) = times2; // or &times2

This defines the variable fp to be a pointer to a function of one int returning
int. The extra parentheses around *fp are required to get the “pointer to func-
tion” meaning right.

Now that we have a function pointer, there is really only one thing we can do with
it. We can call the function, or more precisely, we can apply it to an int and get
an int back. To do this, we dereference the function pointer to get “the function
being pointed to,” pass it its parameter(s), and use its result:

int i = 999;
int j = (*fp)(i); // 1998

As with pointers to structures, the extra parentheses are needed to force the deref-
erencing before the function application.

In this example, there is no reason to use the variable fp since we could just as
easily have called times2 directly in our code. Let’s see a quick example that
requires the use of function pointers.

First, suppose we have a function that will take an array of ints and double each
of the elements using our times2 function. Think about how you would do this,
then look at my code:

void array_double(int a[], int alen) {
for (int i=0; i < alen; i++) {

a[i] = times2(a[i]);
}

}

Not rocket science. Note that we have to pass the length of the array since in C
arrays don’t know their own length (see Section 4.6). The cool thing is that by
using function pointers we can generalize this function so that it can apply any
function of one int argument to each element of the array.
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For example, suppose we also have the following simple function:

int square(int x) {
return x * x;

}

Not very exciting, but it’s just an example. To generalize our array function, we
need to do two things:

1. The array function needs a parameter telling it which int function to use;
and

2. We need to be able to pass either times2 or square as the function to
use.

For the array parameter, it’s the same type as our variable example earlier and it
gets used (applied) the same way also:

void array_apply(int a[], int alen, int (*fp)(int)) {
for (int i=0; i < alen; i++) {

a[i] = (*fp)(a[i]);
}

}

To use this array function, we can pass any “pointer to function that takes one int
parameter and returns int” as the third parameter. For example:

int numbers[] = { 1, 2, 3 };
array_apply(numbers, 3, times2); // 2, 4, 6
array_apply(numbers, 3, square); // 4, 16, 36

You can use your array printing function described in Section 4.6 to verify this
code for yourself. The values shown assume that you first do times2 and then
do square. You should try other arrangements to confirm your understanding.

K&R includes a more complicated example of passing a comparison function to
a sort function. You can compare this to Java’s use of interfaces (for example,
Comparable) and Python’s function objects (for example, the key parameter
to list.sort).
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Finally, one other sophisticated use of function pointers is to store them as mem-
bers of a struct. For example:

struct dog {
char *name;
void (*bark)();

};

void arf() { printf("arf\n"); }
void woof() { printf("woof\n"); }

// ...

struct dog *fido = (struct dog *)malloc(sizeof(struct dog));
fido->name = "fido";
fido->bark = arf;
// ...
fido->bark(); // prints "arf"

Just like structs in C are the ancestors of objects in object-oriented languages
like Java, function pointers in structs are the ancestors of methods. There are
differences. For example, each instance has a separate reference to the “method”
(function), and instances can change the value of these function pointers, which
is equivalent to redefining the method for that instance. And each instance can do
that separately from the other instances of its “class” (which is possible in some
languages, for example Javascript, but not in Java). And so on. C clearly isn’t
an object-oriented language, but you can see the way object-oriented capabilities
could be implemented using pointers, both dynamically allocated data and func-
tion pointers.
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Defining New Types

In Java and other object-oriented languages, when you define a class it becomes
a type that you can use for variables and function declarations, thereby extending
the type system. C has a different mechanism that you will certainly see used and
may want to use yourself. It’s called typedef, and it allows you to define a new
type name. For example:

typedef int Distance;

This makes Distance a synonym for int. Note the somewhat awkward order
of the original and new types (think of Distance as the “variable” being defined
to be an int).

You can then use the new type name anywhere you could use an int. For exam-
ple:

Distance d;
Distance *dp;
Distance distances[100];

One common usage, from K&R, is:

typedef char* String;

Defining more specific type names can make your code clearer. Rather than a
bunch of floats, you can have Distances, Areas, Volumes, and so on. But
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those are all primitive types under the hood, and most programmers use variable
names to make their intent clear. C programmers don’t generally appreciate seeing
String rather than char*, especially since you don’t have nearly the same level
of builtin support for strings in C as in other languages.

It is quite a bit more useful when you use typedefwith structured types (structs).
For example, using our dynamically allocated linked list example from the last
section, we could write:

typedef struct node {
int value;
struct node* next;

} Node;

And then we can use the type Node rather than struct node. For example:

Node* head = (Node*)malloc(sizeof(Node));

This idiom makes C structured types look more like object classes and makes your
code significantly more readable.

You could also typedef the pointer to a struct, as in:

typedef struct node* Node;
struct node {

int value;
Node next;

};
// ...
Node head = (Node)malloc(sizeof(struct node));

The first declaration uses what’s called a partial structure definition. It says that
struct node is a kind of struct, which is enough to define a pointer to it.
Then the full structure definition follows, and can use the Node type.1 This is
pretty close to looking like Java.

1Note that you have to use struct node, the structure type, in the call to malloc. If you
use Node, that’s a pointer type, and you’ll only allocate enough memory for a pointer, not for the
structure (see Section 8.7).
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Finally, K&R has a nice example of using typedef with function pointer types.
Recall from the previous section that these are awkward things like “pointer to
function of one int returning int.” You can define a type for such pointers as
follows:

typedef int (*PFII)(int);
PFII the_func = times2;

Here PFII stands for “Pointer to Function”, then the first “I” for the int ar-
gument and the second “I” for the int return value. Another example, adapted
from K&R, is a pointer to a function of two strings (char*) that returns int:

typedef int (*PFSSI)(char *, char*);
PFSSI strcmp, numcmp;

This form of typedef is often used for the types of callback functions, whose
meaning might otherwise get lost in all the parentheses and asterisks.
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Chapter 10

Sharing Code: Files and
Libraries

In our “Hello World” program, the first line after the comment was

#include <stdio.h>

We commented that this was similar to an import statement in Java in that it
made some library functionality available to your program. Now it’s time to ex-
plain this in more detail, since it is used in every program and is crucial when
developing larger projects.

10.1 The C Preprocessor

The #include statement, and indeed any statement that starts with “#”, is a
preprocessor directive. Recall from Section 3 and Figure 3.2 that the C prepro-
cessor processes your source code before it is seen by the C compiler. There are
many preprocessor directives but I will discuss only two them in this document:
#include and #define.

When the C preprocessor sees a #include directive, it will process the entire
contents of the given file at that point in processing your source code. Thus the
C compiler will see whatever of your program came before #include, then
contents of the included file, then whatever of yours came after. If the given
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filename is enclosed in regular double-quotes, then the preprocessor looks in the
current directory for the file. If the filename is enclosed in angle brackets, as in
our stdio example, then the preprocessor looks for it in the standard system
directories.

In our example, we want to use the function printf from the stdio (Standard
input/output) library. We could #include the source code for the function itself.
The C compiler would compile it in addition to compiling our code. However it
doesn’t really make sense for us to recompile printf every time we compile
my program since we know printf hasn’t changed. In the first place, it might
be large and slow to compile. Its code might be complicated, including variables
and other functions. This code might conflict with our own code when literally
included by the preprocessor. And finally, someone might want to provide access
to a library function for use without making its source code available.

So what happens instead is that the included file typically contains only the decla-
rations of the variables and functions provided by the library. This is enough for
the C compiler to check that you are using them properly, for example, that argu-
ments are of the correct types and that return values are being used correctly. By
convention, these definitions are provided in a file whose name ends with “.h”,
called a “header” file. The actual source code for the implementation of the library
functions is in a separate C source file, which incidentally also #includes the
header file to keep its declarations in sync.

The following are typical contents of header files:

• Function declarations, but not their implementations. This is a bit like an
interface declaration in Java:

int printf(char *, ...);
int strcmp(char *, char *);

• Variable declarations marked with the extern keyword:

extern int errno;
extern FILE *stdin, *stdout, *stderr;

The extern keyword tells the compiler not to generate code to allocate
space for storing the variable. Rather, the name will be “linked” with its
storage later (see below).
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• Macros defined using the #define directive. Simple macros simply tell
the preprocessor to replace a name with some other text. For example:

#define MAXLEN 255
// ...
char buffer[MAXLEN];

While this example could also be done with a const int variable, much
more complicated macros are possible, including macros that take argu-
ments. Also note that because the preprocessor literally replaces occur-
rences of MAXLEN with 255, there is no variable with that name and no
storage allocated for it. It literally doesn’t exist at run-time.

• Other #include directives, which are themselves included inline before
the preprocessor resumes processing the original header file.

10.2 Separate Compilation, Libraries, and Link-
ing

So you have your program source code, say hello.c, and you understand that it
uses the preprocessor #include directive to include definitions of library func-
tions like printf. This is enough for the C compiler to compile your C code to
object code (executable instructions). But before the program can be run, it needs
the object code for printf. This will have been separately compiled from the
printf source code and is stored in a system library.

Recall from Section 3 and Figure 3.2 that the process of combining several object
code files into an executable program is called linking and is performed by the sys-
tem linker. For historical reasons, the linker is usually named ld, which comes
from “loader,” which meant loading a program into memory for execution. Usu-
ally the linker is invoked automatically by the C compiler cc to put together the
final program, although some dynamic linking typically occurs when the program
is run.

The details vary, but one of the main jobs of the linker is to resolve references to
variables and functions defined in header files. That is, for every use of printf
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in your program, the linker must substitute code to invoke the actual implemen-
tation of the function in the library’s object code. Most C compiler toolchains
automatically link your code against the C standard library. For other libraries,
you may need to tell the linker which library to use and possibly where to find it.

10.3 Standard System Libraries

The following is a very brief description of some of the more commonly-used
C standard library functions, grouped by header file. You can find more docu-
mentation online or often by using the man command from your command shell
(terminal).

• stdio.h: The Standard input/output (I/O) library, provides the printf
and scanf families of functions as well as the FILE type and functions
that involve files such as fopen, fclose, fread, and fwrite.

• stdlib.h: The C Standard Library, including malloc, calloc, and
free, and other very fundamental functions like exit and abort. Also
includes random number functions random and srandom (now preferred
over rand and srand).

• string.h: String functions such as strlen, strcmp, and strcpy.
Be sure that you understand how these work based on C’s convention that
strings are simply arrays of char with a NUL character indicating the end
of the string.

• math.h: Math functions corresponding to Java’s Math class: sin, cos,
tan, log, pow, and so on. Now you know where Java got its math func-
tions.

As we have already mentioned, there is no standard library support for any of what
Java calls “Collections”: lists, trees, sets, hashtables, and so on. Luckily these are
easy enough to build yourself if you need them.

Neither does C support “generic” functions, which can be applied to different
types of arguments in a type-safe way. You can accomplish some of the same
things using macros if you have to, which after all is how C++ got started. These
days there are probably better tools for that job than C.
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10.4 Project Development

Separate complication and linking aren’t just for system libraries. You can use
them yourself for larger programs and projects.

You can break your code into separate files that are re-compiled only when they
change. Back in the day when there was no such thing as an IDE and compiling
a file took significant time, this was absolutely necessary. These days, IDEs often
look after this for you and anyway, the compiler is now generally pretty fast. Still,
large projects such as you may find in the open source community may involve
hundreds of thousands of lines of code. These will be broken into separate files to
speed compilation and allow different developers to work on different parts of the
codebase. By the way, this history is the reason Java requires each public class to
be defined in its own source file (other object-oriented languages do not require
this, and some people hate it).

If your different source files need to share definitions, you can write header files
that can be included where necessary. If you develop useful macros, data struc-
tures, and functions, you can share them between projects. You can even build
your own libraries and link against them if you like.

Here’s a quick example of this, for a data strucure representing a point in 2D space.
I assume that you’ve read Section 8.7 on dynamic data structures and Chapter 9
on defining new types using typedef.

The header file Point.h defines the type Point and the functions related to
points:

/* File: Point.h */

typedef struct point *Point;

extern Point new_Point(int x, int y);

extern int Point_getX(Point this);
extern int Point_getY(Point this);
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The implementation file Point.c provides the definition of the struct point
behind the type Point, and the implementations of the functions related to points.
Note that it includes Point.h since it needs the definition of type Point and it
needs to be consistent with the function definitions:

/* File: Point.c */

#include <stdlib.h>
#include "Point.h"

struct point {
int x;
int y;

};

Point new_Point(int x, int y) {
/* Note: Do not use sizeof(Point) for the size

* requested from malloc. The type ‘Point’ is a

* pointer, you need space for a ‘struct point’.

*/
Point this = (Point)malloc(sizeof(struct point));
this->x = x;
this->y = y;
return this;

}

int Point_getX(Point this) {
return this->x;

}

int Point_getY(Point this) {
return this->y;

}
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Finally, our program that uses points is in pointprog.c. It has the code for a
main function that allocates an instance of a point, gets its properties using its
accessors, and prints them out. Note that it also needs to include Point.h (but
not Point.c—it just needs the definitions, not the implementations).

/* File: pointprog.c */

#include <stdio.h>
#include "Point.h"

int main(int argc, char* argv[]) {
Point p = new_Point(123, 456);
int px = Point_getX(p);
int py = Point_getY(p);
printf("px=%d, py=%d\n", px, py);

}

Any source file that needs to know about points must include Point.h. But
Point.c only needs to be compiled once.

The following command will compile both of the C implementation files and link
them together into an executable named pointprog:

gcc -o pointprog Point.c pointprog.c

Run the executable and it will print out the coordinates of the point that it created.

The next section describes some tools for automating separate compilation and
linking the resulting object code files into an executable.
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Chapter 11

Building Larger C Programs

This section describes very briefly how to use the make command to automate
the compilation and linking of your programs. Even if you prefer to use an IDE, I
think it’s useful to know how make works since it shows you what’s going on the
under the hood.

The make command looks for a file named Makefile in the current directory.
This Makefile provides variable definitions and rules for “making” targets from
their dependencies. For C program development, this is primarily making exe-
cutable programs from C program source files.

The key to using make is knowing what to put in your Makefile. Here’s a
simple example:

hello: hello.c
cc -o hello hello.c

This is an example of a single make rule. It says that the target hello, which
is the name of our executable program, depends on the file hello.c. If the
target does not exist or is older than any of its dependencies, then make will use
the given command(s) to try to rebuild it. So in this case, make will run the cc
(“compile C”) command to recompile hello.c whenever necessary.

A couple of things to note:

• make will test that dependencies are up to date and attempt to re-make
them if neccessary before deciding about a target. In this example, the ex-
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ecutable file hello depends on the source file hello.c, but hello.c
itself doesn’t depend on anything.

• The lines of the rule after the first one are the body of the rule. These are the
commands that make should invoke to remake the target. They are indented
with a single TAB character. The rule ends at the first non-indented line.

• In the example, note the use of the -o option to set the name of the resulting
executable.

When you invoke make, it will try to build the first target defined in the Makefile,
or you can tell make which target to build on the command-line. To see what
make will do without actually doing it, you can add the option -n before any
target names.

make comes with many built-in (“implicit”) rules. In particular, it knows how to
make a .o file from the corresponding .c file and it even knows how to make
a program that comes from a single correspondingly-named .c file. This means
that our Makefile really only has to say what the target is:

hello:

Try it. By default, make prints the commands as it executes them, and you will
see that it executes some default rule involving cc to re-compile your program
(or it will report that it is up-to-date, in which case delete the executable and try
again).

Let’s see a slightly more complicated example. Suppose you’ve split your source
code into two C files, scanner.c and util.c. We want to build these into an
executable named scanner.

PROG = scanner
SRCS = scanner.c util.c
OBJS = ${SRCS:%.c=%.o}

$(PROG): $(OBJS)
$(CC) -o $(PROG) $(OBJS)

This example illustrates several additional features of make:
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• Variables: PROG, SRCS, and OBJS. Set a make variable with =. Get its
value using a $ and the name in parentheses (or curly brackets). All make
variables are string-valued.

• A substitution pattern which initializes the value of the variable OBJS to
be the value of the variable SRCS with any occurrence of “.c” replaced by
“.o”. There are many other ways to manipulate text in make.

• The variables are used in the Makefile’s one rule. Variable names must
be in parentheses or curly backets if they are longer than one character. So
this rule expands to:

scanner: scanner.o util.o
$(CC) -o scanner scanner.o util.o

• Built-in variables, like $(CC), which are pre-defined to reasonable values
for the platform, or you can redefine them.

This Makefile therefore says that the executable scanner depends on two
object files: scanner.o and util.o. make already knows how to build those
two files from their corresponding .c files, so it will do that first if necessary.
Then it will link the two object files using the cc command to produce the exe-
cutable scanner.

This is will leave the object files lying around. If you don’t like that, add another
rule to the Makefile:

clean:
-rm $(OBJS)

This says that the target “clean” depends on nothing, so make will always run
the rule’s body in order to build the target. The body is the rm command to
remove the object files. The “-” in front of the command tells make not to exit
if the command fails, which it might if, for example, the object files haven’t been
made yet. To run this, just type “make clean” (or “make -n clean” to
check your Makefile).

There is much, much more to make. See the manpage or, probably better, the
online GNU Project document for it: https://www.gnu.org/software/
make/.

https://www.gnu.org/software/make/
https://www.gnu.org/software/make/


82 CHAPTER 11. BUILDING LARGER C PROGRAMS



Chapter 12

Debugging a C Program

Debugging is a crucial skill for any programmer. Most aspects are not specific to
any programming language (for example, the practice of test-driven development).
In this section I’ll mention just a few tips about debugging C programs.

I’m a big believer in “print statement” debugging. That is, print the values you
have and maybe what you expect and watch the output go by. This is generally
easier and more informative than working with a debugger, but opinions differ.

To print out a pointer, modern C compilers provide the “p” format specifier for
printf:

printf("pointer is %p\n", ptr);

The traditional way of doing this was to print the pointer in “long hexadecimal”
(base 16) prefixed by “0x” (which is traditional but optional):

printf("pointer is 0x%lx\n", ptr);

You can use decimal if you like (format letter d rather than x), but hex is shorter
and usually all you want to know is whether two pointers are the same or not. With
modern C compilers and restrictive settings, you may need to cast the pointers you
are printing, or just use “%p”.
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12.1 Debuggers

If you need a debugger and are not using an IDE, you would use gdb to go with
gcc (and lldb to go with llvm/clang). The debugger generally has a complex
command shell syntax. Some useful commands for you to investigate are run,
break, backtrace (bt), step, continue (c), and quit.

Remember that there are no exceptions in C. The analogue (sort of) is something
called “signals.” Especially for beginners, most signals that your program might
receive are due to fatal errors. You can register signal handlers and this can some-
times be useful or even necessary. But I don’t think you’ll run into it until you’re
a C expert. A debugger will catch the signal and let you investigate the state of
your program.

Full documentation of gdb is at the GNU Project website: https://www.
gnu.org/software/gdb/. For lldb, it’s at the llvm website: http:
//lldb.llvm.org.

You usually need to give the -g option to the compiler when compiling in order
for it to include the symbol information required for symbolic debugging. If you
get no variable names in the output, just octal or hex addresses, that’s probably
the problem.

12.2 Compiler Options

While I’m mentioning compiler options, let me suggest that you also always use
the options “-Wall -Werror” with gcc or clang. These mean, respectively,
to report all possible warnings, and to make all warnings into errors so that the
program will not compile with any warnings. At least for beginning C program-
mers, warnings indicate that you are doing something that is not recommended
but technically not forbidden (usually for historical reasons). You shouldn’t have
to do that. I’ll also mention the option “-std=c99” which causes the compiler to
use the C99 language standard. I strongly recommend that you stick with the C99
core as you’re getting started. There are other possibilities that you can investigate
as your C skills improve.

https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
http://lldb.llvm.org
http://lldb.llvm.org
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12.3 valgrind

The biggest source of problems for Java programmers programming in C, and
indeed for C programmers in general, is memory management. As you program
in C, you quickly appreciate why more recent languages include some form of
automated memory management. But in C, you’re on your own. I have two
suggestions.

First: Design your dynamic data structures carefully. As a Java programmer, you
understand about things like constructors, getters and setters, and the safety of a
strongly typed language. So write your C code that way. For a structured type
(a struct) named “Thing,” have a “constructor” function new Thing, a “de-
structor” free Thing, use getters and setters (e.g., Thing get x, Thing set x),
and avoid casts outside constructors unless absolutely necessary (e.g., to mimic
generics). Together with strong compiler options, this will prevent many prob-
lems and will help you track down the problems that sneak through.

Second: Find (or install) and use the valgrind program on your system. Among
other things, valgrind tools “can automatically detect many memory manage-
ment and threading bugs, and profile your programs in detail.” Valgrind will swap
out your platform’s implementation of malloc, free, and the rest and substi-
tute its own versions. These run much more slowly than the originals, but they
track every piece of memory that you allocate and/or free. You get a report in-
cluding memory leaks (memory that you allocated but forgot to free), as well as
places where you wrote to memory improperly (for example, off the end of an
array). You then fix those issues until valgrind reports no errors. You can find
valgrind at valgrind.org. Use it.

http://valgrind.org/docs/manual/quick-start.html
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Chapter 13

Final Thoughts

We’ve covered a lot of ground. Let me leave you with a few thoughts.

First: Don’t freak out. C is really very similar to Java.

Ok. You’re not freaking out. Where to start? You should start any project with a
design phase. What information does my program need to keep track of? What
kinds of things is it dealing with? How are those things related?

As an example that I use in my intro programming classes, think about a pro-
gram that lets a user manage their financial information. What does it need to
keep track of? Answer: how much money you have (or owe) and where it is.
So I would probably start with financial accounts. There are different kinds of
accounts, for example bank accounts, credit card accounts, brokerage accounts,
and so on. Sounds like the start of a class hierarchy. Or maybe just do bank
accounts first and make notes for later generalization. What else? People hold
(own) the accounts. The accounts are with institutions like banks and brokerages.
The accounts have transactions (of various types), they have a balance (which is
a function of the transactions), and so on. You get the idea. You’re designing the
model of the world that you will build inside the computer so that it can solve
problems for you.

In Java, you would take your design and write some classes. Classes define ref-
erence types and values of the type refer to instances of the class. In C, you will
write some structures, and pointers to instances of your structures are references.

In place of constructors, write a function to allocate, initialize, and return an in-
stance of each kind of structure. Don’t call malloc or calloc outside of these
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“constructors.”

Next, write functions that get and set the members of the structure (properties of
the object). These functions should be named as described earlier in this document
to avoid conflicts over member names. These will be quite repetitive, just like Java
getters and setters. Of course you don’t have to have getters and setters (just like
Java), but it does help you focus and allows you to change the implementation of
the data structure later without having to change the code that uses it.

That will actually get you pretty far. Now you have to write the code that actually
solves whatever problem it is you’re working on. But there’s nothing specific to
C about that. In fact, you could do it in Java and almost copy the code into your
C program with only fairly minor changes.

One last suggestion: don’t call free unless or until you have to. If you don’t
call free, you can’t have dangling pointer bugs. Of course you could still have
bugs with your pointers. But these are the exact same bugs that would show up in
Java as NullPointerExceptions or incorrect performance. For many small,
course-sized projects, you may not ever run out of memory (except perhaps for AI
classes). Of course as a Computer Scientist you should probably understand how
to manage the memory used by your programs. But it wouldn’t be the first thing I
worried about on a project.

Bottom line: Start with a design. Build something simple that works and incre-
mentally make it better. Just like you would if you were programming in Java. . .
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